To see the documentation for a specific ufunc, use info
. For example, np.info(np.sin)
. Because ufuncs are written in C (for speed) and linked into Python with NumPy's ufunc facility, Python's help() function finds this page whenever help() is called on a ufunc.
A detailed explanation of ufuncs can be found in the docs for ufuncs
.
Calling ufuncs: op(*x[, out], where=True, **kwargs)
Apply :None:None:`op` to the arguments :None:None:`*x` elementwise, broadcasting the arguments.
The broadcasting rules are:
Dimensions of length 1 may be prepended to either array.
Arrays may be repeated along dimensions of length 1.
Input arrays.
Alternate array object(s) in which to put the result; if provided, it must have a shape that the inputs broadcast to. A tuple of arrays (possible only as a keyword argument) must have length equal to the number of outputs; use None for uninitialized outputs to be allocated by the ufunc.
This condition is broadcast over the input. At locations where the condition is True, the :None:None:`out` array will be set to the ufunc result. Elsewhere, the :None:None:`out` array will retain its original value. Note that if an uninitialized :None:None:`out` array is created via the default out=None
, locations within it where the condition is False will remain uninitialized.
For other keyword-only arguments, see the ufunc docs <ufuncs.kwargs>
.
r will have the shape that the arrays in x broadcast to; if :None:None:`out` is provided, it will be returned. If not, r will be allocated and may contain uninitialized values. If the function has more than one output, then the result will be a tuple of arrays.
Functions that operate element by element on whole arrays.
The following pages refer to to this document either explicitly or contain code examples using this.
dask.array.ufunc.fmoddask.array.ufunc.arctan2dask.array.ufunc.cosdask.array.ufunc.not_equaldask.array.random.RandomState.gammadask.array.ufunc.logical_xordask.array.ufunc.arcsindask.array.ufunc.logaddexpdask.array.ufunc.isfinitedask.array.ufunc.radiansdask.array.ufunc.less_equaldask.array.ufunc.logaddexp2dask.array.ufunc.frompyfuncdask.array.ufunc.expm1dask.array.ufunc.negativedask.array.ufunc.copysigndask.array.ufunc.tandask.array.ufunc.truncdask.array.ufunc.powerdask.array.ufunc.arcsinhdask.array.ufunc.fabsdask.array.random.RandomState.standard_gammadask.array.ufunc.isnandask.array.ufunc.rad2degdask.array.ufunc.float_powerdask.array.ufunc.log2dask.array.ufunc.logdask.array.ufunc.ufunc.outerdask.array.ufunc.ldexpdask.array.random.RandomState.standard_tdask.array.ufunc.true_dividedask.array.ufunc.sinhdask.array.ufunc.logical_ordask.array.ufunc.floor_dividedask.array.ufunc.reciprocaldask.array.ufunc.coshdask.array.ufunc.minimumdask.array.ufunc.fmaxdask.array.ufunc.squaredask.array.ufunc.logical_notdask.array.ufunc.arccosdask.array.ufunc.modfdask.array.ufunc.spacingdask.array.ufunc.nextafterdask.array.ufunc.isinfdask.array.ufunc.degreesdask.array.ufunc.exp2dask.array.random.RandomState.weibulldask.array.ufunc.arctanhdask.array.ufunc.equaldask.array.random.RandomState.laplacedask.array.ufunc.deg2raddask.array.ufunc.conjugatedask.array.random.RandomState.logisticdask.array.random.RandomState.lognormaldask.array.ufunc.sindask.array.ufunc.ceildask.array.ufunc.cbrtdask.array.ufunc.bitwise_xordask.array.ufunc.signdask.array.ufunc.greaterdask.array.ufunc.arccoshdask.array.ufunc.bitwise_anddask.array.ufunc.remainderdask.array.random.RandomState.rayleighdask.array.ufunc.absolutedask.array.random.RandomState.vonmisesdask.array.ufunc.expdask.array.ufunc.sqrtdask.array.ufunc.lessdask.array.ufunc.arctandask.array.ufunc.maximumdask.array.ufunc.log10dask.array.ufunc.signbitdask.array.ufunc.fmindask.array.routines.extractdask.array.ufunc.floordask.array.reductions.mindask.array.reductions.maxdask.array.ufunc.rintdask.array.ufunc.tanhdask.array.ufunc.multiplydask.array.random.RandomState.logseriesdask.array.random.RandomState.normaldask.array.ufunc.adddask.array.ufunc.subtractdask.array.ufunc.bitwise_ordask.array.ufunc.greater_equaldask.array.ufunc.logical_anddask.array.einsumfuncs.einsumdask.array.ufunc.hypotdask.array.ufunc.invertdask.array.random.RandomState.gumbeldask.array.ufunc.divmoddask.array.ufunc.log1ppandas.core.series.Series.corrpandas.core.frame.DataFrame.applypandas.core.series.Series.sort_valuespandas.core.frame.DataFrame.combinepandas.core.series.Series.transformpandas.core.frame.DataFrame.corrpandas.core.series.Series.applypandas.core.frame.DataFrame.transformscipy.signal.exponentialscipy.special._basic.erf_zerosscipy.signal.windows._windows.boxcarscipy.signal._filter_design.gammatonescipy.signal._peak_finding.argrelextremascipy.signal.bartlettscipy.optimize._basinhopping.basinhoppingscipy.interpolate._bsplines.make_lsq_splinescipy.signal.windows._windows.triangscipy.signal.windows._windows.barthannscipy.special._basic.jn_zerosscipy.signal._czt.CZTscipy.fft._basic.hfftscipy.signal.boxcarscipy.signal.chebwinscipy.spatial.transform._rotation_spline.RotationSplinescipy.interpolate._ndgriddata.griddatascipy.signal.windows._windows.hannscipy.signal._waveforms.squarescipy.signal._filter_design.cheb2ordscipy.integrate._quadrature.rombergscipy.signal._filter_design.iirdesignscipy.signal._ltisys.lsim2scipy.signal.blackmanharrisscipy.fft._basic.fftscipy.signal._signaltools.resample_polyscipy.signal.windows._windows.chebwinscipy.signal.parzenscipy.signal._filter_design.cheb1ordscipy.signal._filter_design.buttordscipy.interpolate._interpolate.interp2dscipy.signal.windows._windows.dpssscipy.interpolate._interpolate.interp1dscipy.signal.barthannscipy.interpolate._bsplines.make_interp_splinescipy.linalg._decomp_svd.subspace_anglesscipy.integrate._quadrature.fixed_quadscipy.signal._filter_design.iirfilterscipy.spatial.transform._rotation.Rotationscipy.special._ufuncs.seterrscipy.signal._filter_design.sosfreqzscipy.signal._max_len_seq.max_len_seqscipy.signal.windows._windows.general_cosinescipy.signal.flattopscipy.signal._filter_design.ellipscipy.optimize._minpack_py.fixed_pointscipy.signal.windows._windows.exponentialscipy.signal._fir_filter_design.minimum_phasescipy.signal._signaltools.filtfiltscipy.special._orthogonal.genlaguerrescipy.signal.windows._windows.blackmanscipy.signal.gaussianscipy.signal.windows._windows.cosinescipy.signal._fir_filter_design.kaiserordscipy.signal._filter_design.butterscipy.sparse.linalg._expm_multiply.expm_multiplyscipy.linalg._decomp_svd.null_spacescipy.signal._spectral_py.csdscipy.signal.windows._windows.tukeyscipy.special._spfun_stats.multigammalnscipy.signal._filter_design.besselscipy.signal._filter_design.bilinearscipy.signal.hannscipy.signal._signaltools.correlatescipy.signal.tukeyscipy.signal._peak_finding._boolrelextremascipy.optimize._differentialevolution.differential_evolutionscipy.signal.bohmanscipy.signal._spectral_py.istftscipy.linalg._basic.matrix_balancescipy.signal.hammingscipy.signal.windows._windows.kaiserscipy.signal.cosinescipy.signal._czt.czt_pointsscipy.integrate._quadrature.quadraturescipy.linalg._decomp_qr.qrscipy.integrate._quadrature.simpsonscipy.signal._ltisys.lsimscipy.optimize._numdiff.approx_derivativescipy.signal._spectral_py.lombscarglescipy.special._logsumexp.logsumexpscipy.special._ufuncs.errstatescipy.signal._filter_design.freqzscipy.optimize._dual_annealing.dual_annealingscipy.signal._filter_design.iirpeakscipy.special._orthogonal.chebytscipy.integrate._quadrature.rombscipy.signal._fir_filter_design.firlsscipy.signal._filter_design.freqz_zpkscipy.signal.windows._windows.taylorscipy.signal._spectral_py.welchscipy.signal.windows._windows.bartlettscipy.signal.triangscipy.interpolate._fitpack_impl.splantiderscipy.optimize._constraints.NonlinearConstraintscipy.signal.windows._windows.bohmanscipy.signal._spectral_py.spectrogramscipy.special._basic.yn_zerosscipy.optimize._minpack_py.curve_fitscipy.optimize._root._root_broyden1_docscipy.signal._peak_finding.find_peaks_cwtscipy.interpolate._fitpack_py.splantiderscipy.signal._spectral_py.periodogramscipy.optimize._minpack_py.fsolvescipy.optimize._optimize.brutescipy.special._lambertw.lambertwscipy.signal.blackmanscipy.optimize._numdiff.check_derivativescipy.signal.windows._windows.nuttallscipy.optimize._zeros_py.newtonscipy.signal.windows._windows.general_gaussianscipy.signal.windows._windows.gaussianscipy.signal.windows._windows.flattopscipy.interpolate._fitpack2.UnivariateSpline.antiderivativescipy.integrate._quadpack_py.quadscipy.signal._filter_design.iirnotchscipy.integrate._quadpack_py.nquadscipy.signal.windows._windows.general_hammingscipy.signal._peak_finding.find_peaksscipy.special._basic.diricscipy.signal.kaiserscipy.signal._fir_filter_design.remezscipy.signal._spectral_py.coherencescipy.signal.general_gaussianscipy.signal._spectral_py.stftscipy.sparse.csgraph._matching.min_weight_full_bipartite_matchingscipy.signal.windows._windows.parzenscipy.signal._filter_design.freqs_zpkscipy.signal.nuttallscipy.signal._filter_design.cheby1scipy.signal._signaltools.hilbertscipy.signal.windows._windows.blackmanharrisscipy.integrate._bvp.solve_bvpscipy.integrate._odepack_py.odeintscipy.signal._filter_design.ellipordscipy.signal._signaltools.convolve2dscipy.interpolate._cubic.CubicSplinescipy.signal._filter_design.cheby2scipy.signal.windows._windows.hammingscipy.signal._filter_design.bilinear_zpkscipy.signal._filter_design.iircombskimage.feature.corner_cy._corner_orientationsskimage.filters.lpi_filter.forwardskimage.feature.corner.corner_orientationsskimage.morphology._deprecated.watershedskimage.measure.fit.CircleModelskimage.measure.fit.EllipseModelskimage.draw.draw.ellipseskimage.morphology.greyreconstruct.reconstructionskimage.filters.lpi_filter.LPIFilter2D.__init__skimage.restoration.unwrap.unwrap_phaseskimage.measure.fit.LineModelNDskimage.segmentation.active_contour_model.active_contourHover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them