scipy 1.8.0 Pypi GitHub Homepage
Other Docs
NotesParametersReturnsBackRef
correlate(in1, in2, mode='full', method='auto')

Cross-correlate :None:None:`in1` and in2 , with the output size determined by the :None:None:`mode` argument.

Notes

The correlation z of two d-dimensional arrays x and y is defined as:

z[...,k,...] = sum[..., i_l, ...] x[..., i_l,...] * conj(y[..., i_l - k,...])

This way, if x and y are 1-D arrays and z = correlate(x, y, 'full') then

$$z[k] = (x * y)(k - N + 1) = \sum_{l=0}^{||x||-1}x_l y_{l-k+N-1}^{*}$$

for $k = 0, 1, ..., ||x|| + ||y|| - 2$

where $||x||$ is the length of x , $N = \max(||x||,||y||)$ , and $y_m$ is 0 when m is outside the range of y.

method='fft' only works for numerical arrays as it relies on fftconvolve . In certain cases (i.e., arrays of objects or when rounding integers can lose precision), method='direct' is always used.

When using "same" mode with even-length inputs, the outputs of correlate and correlate2d differ: There is a 1-index offset between them.

Parameters

in1 : array_like

First input.

in2 : array_like

Second input. Should have the same number of dimensions as :None:None:`in1`.

mode : str {'full', 'valid', 'same'}, optional

A string indicating the size of the output:

full

The output is the full discrete linear cross-correlation of the inputs. (Default)

valid

The output consists only of those elements that do not rely on the zero-padding. In 'valid' mode, either :None:None:`in1` or in2 must be at least as large as the other in every dimension.

same

The output is the same size as :None:None:`in1`, centered with respect to the 'full' output.

method : str {'auto', 'direct', 'fft'}, optional

A string indicating which method to use to calculate the correlation.

direct

The correlation is determined directly from sums, the definition of correlation.

fft

The Fast Fourier Transform is used to perform the correlation more quickly (only available for numerical arrays.)

auto

Automatically chooses direct or Fourier method based on an estimate of which is faster (default). See convolve Notes for more detail.

versionadded

Returns

correlate : array

An N-dimensional array containing a subset of the discrete linear cross-correlation of :None:None:`in1` with in2 .

Cross-correlate two N-dimensional arrays.

See Also

choose_conv_method

contains more documentation on :None:None:`method`.

correlation_lags

calculates the lag / displacement indices array for 1D cross-correlation.

Examples

Implement a matched filter using cross-correlation, to recover a signal that has passed through a noisy channel.

>>> from scipy import signal
... import matplotlib.pyplot as plt
... rng = np.random.default_rng()
>>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128)
... sig_noise = sig + rng.standard_normal(len(sig))
... corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128
>>> clock = np.arange(64, len(sig), 128)
... fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True)
... ax_orig.plot(sig)
... ax_orig.plot(clock, sig[clock], 'ro')
... ax_orig.set_title('Original signal')
... ax_noise.plot(sig_noise)
... ax_noise.set_title('Signal with noise')
... ax_corr.plot(corr)
... ax_corr.plot(clock, corr[clock], 'ro')
... ax_corr.axhline(0.5, ls=':')
... ax_corr.set_title('Cross-correlated with rectangular pulse')
... ax_orig.margins(0, 0.1)
... fig.tight_layout()
... plt.show()

Compute the cross-correlation of a noisy signal with the original signal.

>>> x = np.arange(128) / 128
... sig = np.sin(2 * np.pi * x)
... sig_noise = sig + rng.standard_normal(len(sig))
... corr = signal.correlate(sig_noise, sig)
... lags = signal.correlation_lags(len(sig), len(sig_noise))
... corr /= np.max(corr)
>>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, figsize=(4.8, 4.8))
... ax_orig.plot(sig)
... ax_orig.set_title('Original signal')
... ax_orig.set_xlabel('Sample Number')
... ax_noise.plot(sig_noise)
... ax_noise.set_title('Signal with noise')
... ax_noise.set_xlabel('Sample Number')
... ax_corr.plot(lags, corr)
... ax_corr.set_title('Cross-correlated signal')
... ax_corr.set_xlabel('Lag')
... ax_orig.margins(0, 0.1)
... ax_noise.margins(0, 0.1)
... ax_corr.margins(0, 0.1)
... fig.tight_layout()
... plt.show()
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

numpy.correlate scipy.signal._signaltools.correlation_lags scipy.signal._signaltools.choose_conv_method scipy.signal._signaltools.convolve scipy.signal._signaltools.correlate2d scipy.signal._signaltools.correlate

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/signal/_signaltools.py#90
type: <class 'function'>
Commit: