scipy 1.8.0 Pypi GitHub Homepage
Other Docs
ParametersReturnsBackRef
fftconvolve(in1, in2, mode='full', axes=None)

Convolve :None:None:`in1` and in2 using the fast Fourier transform method, with the output size determined by the :None:None:`mode` argument.

This is generally much faster than convolve for large arrays (n > ~500), but can be slower when only a few output values are needed, and can only output float arrays (int or object array inputs will be cast to float).

As of v0.19, convolve automatically chooses this method or the direct method based on an estimation of which is faster.

Parameters

in1 : array_like

First input.

in2 : array_like

Second input. Should have the same number of dimensions as :None:None:`in1`.

mode : str {'full', 'valid', 'same'}, optional

A string indicating the size of the output:

full

The output is the full discrete linear convolution of the inputs. (Default)

valid

The output consists only of those elements that do not rely on the zero-padding. In 'valid' mode, either :None:None:`in1` or in2 must be at least as large as the other in every dimension.

same

The output is the same size as :None:None:`in1`, centered with respect to the 'full' output.

axes : int or array_like of ints or None, optional

Axes over which to compute the convolution. The default is over all axes.

Returns

out : array

An N-dimensional array containing a subset of the discrete linear convolution of :None:None:`in1` with in2 .

Convolve two N-dimensional arrays using FFT.

See Also

convolve

Uses the direct convolution or FFT convolution algorithm depending on which is faster.

oaconvolve

Uses the overlap-add method to do convolution, which is generally faster when the input arrays are large and significantly different in size.

Examples

Autocorrelation of white noise is an impulse.

>>> from scipy import signal
... rng = np.random.default_rng()
... sig = rng.standard_normal(1000)
... autocorr = signal.fftconvolve(sig, sig[::-1], mode='full')
>>> import matplotlib.pyplot as plt
... fig, (ax_orig, ax_mag) = plt.subplots(2, 1)
... ax_orig.plot(sig)
... ax_orig.set_title('White noise')
... ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr)
... ax_mag.set_title('Autocorrelation')
... fig.tight_layout()
... fig.show()

Gaussian blur implemented using FFT convolution. Notice the dark borders around the image, due to the zero-padding beyond its boundaries. The convolve2d function allows for other types of image boundaries, but is far slower.

>>> from scipy import misc
... face = misc.face(gray=True)
... kernel = np.outer(signal.windows.gaussian(70, 8),
...  signal.windows.gaussian(70, 8))
... blurred = signal.fftconvolve(face, kernel, mode='same')
>>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1,
...  figsize=(6, 15))
... ax_orig.imshow(face, cmap='gray')
... ax_orig.set_title('Original')
... ax_orig.set_axis_off()
... ax_kernel.imshow(kernel, cmap='gray')
... ax_kernel.set_title('Gaussian kernel')
... ax_kernel.set_axis_off()
... ax_blurred.imshow(blurred, cmap='gray')
... ax_blurred.set_title('Blurred')
... ax_blurred.set_axis_off()
... fig.show()
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

numpy.lib.stride_tricks.sliding_window_view scipy.fft._pocketfft.helper.set_workers scipy.signal._signaltools._freq_domain_conv scipy.signal._signaltools._init_freq_conv_axes scipy.signal._signaltools.fftconvolve scipy.signal._signaltools.choose_conv_method numpy.convolve scipy.signal._signaltools.convolve scipy.signal._signaltools.oaconvolve scipy.signal._signaltools._apply_conv_mode dask.array.overlap.sliding_window_view scipy.signal._signaltools.correlate

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/signal/_signaltools.py#555
type: <class 'function'>
Commit: