scipy 1.8.0 Pypi GitHub Homepage
Other Docs
NotesParametersReturnsBackRef
gaussian(M, std, sym=True)

Notes

The Gaussian window is defined as

$$w(n) = e^{ -\frac{1}{2}\left(\frac{n}{\sigma}\right)^2 }$$

Parameters

M : int

Number of points in the output window. If zero or less, an empty array is returned.

std : float

The standard deviation, sigma.

sym : bool, optional

When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis.

Returns

w : ndarray

The window, with the maximum value normalized to 1 (though the value 1 does not appear if M is even and :None:None:`sym` is True).

Return a Gaussian window.

Examples

Plot the window and its frequency response:

>>> from scipy import signal
... from scipy.fft import fft, fftshift
... import matplotlib.pyplot as plt
>>> window = signal.windows.gaussian(51, std=7)
... plt.plot(window)
... plt.title(r"Gaussian window ($\sigma$=7)")
... plt.ylabel("Amplitude")
... plt.xlabel("Sample")
>>> plt.figure()
... A = fft(window, 2048) / (len(window)/2.0)
... freq = np.linspace(-0.5, 0.5, len(A))
... response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
... plt.plot(freq, response)
... plt.axis([-0.5, 0.5, -120, 0])
... plt.title(r"Frequency response of the Gaussian window ($\sigma$=7)")
... plt.ylabel("Normalized magnitude [dB]")
... plt.xlabel("Normalized frequency [cycles per sample]")
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

scipy.signal.windows._windows.get_window scipy.signal._signaltools.fftconvolve scipy.signal.gaussian scipy.signal.windows._windows.gaussian

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/signal/windows/_windows.py#1216
type: <class 'function'>
Commit: