To remove in the future –– scipy.linalg
.. currentmodule:: scipy.linalg
Linear algebra functions.
<Comment: |value: '.. eventually, we should replace the numpy.linalg HTML link with just `numpy.linalg`' |>
.. seealso:: `numpy.linalg <https://www.numpy.org/devdocs/reference/routines.linalg.html>`__ for more linear algebra functions. Note that although `scipy.linalg` imports most of them, identically named functions from `scipy.linalg` may offer more or slightly differing functionality.
.. autosummary:: :toctree:generated/ inv - Find the inverse of a square matrix solve - Solve a linear system of equations solve_banded - Solve a banded linear system solveh_banded - Solve a Hermitian or symmetric banded system solve_circulant - Solve a circulant system solve_triangular - Solve a triangular matrix solve_toeplitz - Solve a toeplitz matrix matmul_toeplitz - Multiply a Toeplitz matrix with an array. det - Find the determinant of a square matrix norm - Matrix and vector norm lstsq - Solve a linear least-squares problem pinv - Pseudo-inverse (Moore-Penrose) using lstsq pinv2 - Pseudo-inverse using svd pinvh - Pseudo-inverse of hermitian matrix kron - Kronecker product of two arrays khatri_rao - Khatri-Rao product of two arrays tril - Construct a lower-triangular matrix from a given matrix triu - Construct an upper-triangular matrix from a given matrix orthogonal_procrustes - Solve an orthogonal Procrustes problem matrix_balance - Balance matrix entries with a similarity transformation subspace_angles - Compute the subspace angles between two matrices bandwidth - Return the lower and upper bandwidth of an array issymmetric - Check if a square 2D array is symmetric ishermitian - Check if a square 2D array is Hermitian LinAlgError LinAlgWarning
.. autosummary:: :toctree:generated/ eig - Find the eigenvalues and eigenvectors of a square matrix eigvals - Find just the eigenvalues of a square matrix eigh - Find the e-vals and e-vectors of a Hermitian or symmetric matrix eigvalsh - Find just the eigenvalues of a Hermitian or symmetric matrix eig_banded - Find the eigenvalues and eigenvectors of a banded matrix eigvals_banded - Find just the eigenvalues of a banded matrix eigh_tridiagonal - Find the eigenvalues and eigenvectors of a tridiagonal matrix eigvalsh_tridiagonal - Find just the eigenvalues of a tridiagonal matrix
.. autosummary:: :toctree:generated/ lu - LU decomposition of a matrix lu_factor - LU decomposition returning unordered matrix and pivots lu_solve - Solve Ax=b using back substitution with output of lu_factor svd - Singular value decomposition of a matrix svdvals - Singular values of a matrix diagsvd - Construct matrix of singular values from output of svd orth - Construct orthonormal basis for the range of A using svd null_space - Construct orthonormal basis for the null space of A using svd ldl - LDL.T decomposition of a Hermitian or a symmetric matrix. cholesky - Cholesky decomposition of a matrix cholesky_banded - Cholesky decomp. of a sym. or Hermitian banded matrix cho_factor - Cholesky decomposition for use in solving a linear system cho_solve - Solve previously factored linear system cho_solve_banded - Solve previously factored banded linear system polar - Compute the polar decomposition. qr - QR decomposition of a matrix qr_multiply - QR decomposition and multiplication by Q qr_update - Rank k QR update qr_delete - QR downdate on row or column deletion qr_insert - QR update on row or column insertion rq - RQ decomposition of a matrix qz - QZ decomposition of a pair of matrices ordqz - QZ decomposition of a pair of matrices with reordering schur - Schur decomposition of a matrix rsf2csf - Real to complex Schur form hessenberg - Hessenberg form of a matrix cdf2rdf - Complex diagonal form to real diagonal block form cossin - Cosine sine decomposition of a unitary or orthogonal matrix
.. seealso:: `scipy.linalg.interpolative` -- Interpolative matrix decompositions
.. autosummary:: :toctree:generated/ expm - Matrix exponential logm - Matrix logarithm cosm - Matrix cosine sinm - Matrix sine tanm - Matrix tangent coshm - Matrix hyperbolic cosine sinhm - Matrix hyperbolic sine tanhm - Matrix hyperbolic tangent signm - Matrix sign sqrtm - Matrix square root funm - Evaluating an arbitrary matrix function expm_frechet - Frechet derivative of the matrix exponential expm_cond - Relative condition number of expm in the Frobenius norm fractional_matrix_power - Fractional matrix power
.. autosummary:: :toctree:generated/ solve_sylvester - Solve the Sylvester matrix equation solve_continuous_are - Solve the continuous-time algebraic Riccati equation solve_discrete_are - Solve the discrete-time algebraic Riccati equation solve_continuous_lyapunov - Solve the continuous-time Lyapunov equation solve_discrete_lyapunov - Solve the discrete-time Lyapunov equation
.. autosummary:: :toctree:generated/ clarkson_woodruff_transform - Applies the Clarkson Woodruff Sketch (a.k.a CountMin Sketch)
.. autosummary:: :toctree:generated/ block_diag - Construct a block diagonal matrix from submatrices circulant - Circulant matrix companion - Companion matrix convolution_matrix - Convolution matrix dft - Discrete Fourier transform matrix fiedler - Fiedler matrix fiedler_companion - Fiedler companion matrix hadamard - Hadamard matrix of order 2**n hankel - Hankel matrix helmert - Helmert matrix hilbert - Hilbert matrix invhilbert - Inverse Hilbert matrix leslie - Leslie matrix pascal - Pascal matrix invpascal - Inverse Pascal matrix toeplitz - Toeplitz matrix tri - Construct a matrix filled with ones at and below a given diagonal
.. autosummary:: :toctree:generated/ get_blas_funcs get_lapack_funcs find_best_blas_type
.. seealso:: `scipy.linalg.blas` -- Low-level BLAS functions `scipy.linalg.lapack` -- Low-level LAPACK functions `scipy.linalg.cython_blas` -- Low-level BLAS functions for Cython `scipy.linalg.cython_lapack` -- Low-level LAPACK functions for Cython
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.linalg._solvers.solve_continuous_are
scipy.linalg._decomp_update.qr_insert
scipy.linalg._matfuncs_sqrtm.sqrtm
scipy.linalg._special_matrices.helmert
scipy.linalg._decomp_svd.svdvals
scipy.linalg._special_matrices.hadamard
scipy.linalg._expm_frechet.expm_frechet
scipy.linalg._decomp_cholesky.cholesky_banded
scipy.linalg._decomp_cholesky.cho_factor
scipy.linalg._solvers.solve_sylvester
scipy.linalg.blas.get_blas_funcs
scipy.linalg._matfuncs.signm
scipy.linalg._basic.inv
scipy.linalg._special_matrices.pascal
scipy.linalg._special_matrices.tri
scipy.linalg._decomp_update.qr_delete
scipy.linalg._basic.solve_circulant
scipy.linalg._matfuncs.tanm
scipy.linalg._matfuncs.logm
scipy.linalg.blas.find_best_blas_type
scipy.linalg._decomp_svd.subspace_angles
scipy.linalg._matfuncs.fractional_matrix_power
scipy.linalg._special_matrices.dft
scipy.linalg._decomp.eigvals
scipy.linalg._expm_frechet.expm_cond
scipy.linalg._decomp.eig
scipy.linalg._decomp.hessenberg
scipy.linalg._decomp.eigvalsh
scipy.linalg.lapack._compute_lwork
scipy.linalg._matfuncs.sinhm
scipy.linalg._misc.norm
scipy.linalg._decomp_schur.rsf2csf
scipy.linalg._solvers.solve_discrete_lyapunov
scipy.linalg._decomp_svd.null_space
scipy.linalg._basic.solve
scipy.linalg._special_matrices.leslie
scipy.linalg._basic.solve_banded
scipy.linalg._decomp.eigvals_banded
scipy.linalg._special_matrices.tril
scipy.linalg._decomp_update.qr_update
scipy.linalg._decomp_ldl.ldl
scipy.linalg._basic.det
scipy.linalg._decomp_qz.qz
scipy.linalg._solvers.solve_discrete_are
scipy.linalg._decomp.eigh
scipy.linalg._basic.matrix_balance
scipy.linalg._decomp_qr.qr_multiply
scipy.linalg._solvers.solve_continuous_lyapunov
scipy.linalg._basic.solve_toeplitz
scipy.linalg._matfuncs.cosm
scipy.linalg._decomp_qr.qr
scipy.linalg._basic.pinv
scipy.linalg._matfuncs.funm
scipy.linalg._special_matrices.triu
scipy.linalg._matfuncs.coshm
scipy.linalg._matfuncs.khatri_rao
scipy.special._orthogonal.chebyu
scipy.linalg._matfuncs.sinm
scipy.linalg._basic.lstsq
scipy.linalg._special_matrices.companion
scipy.linalg._decomp.eig_banded
scipy.special._orthogonal.chebyt
scipy.linalg._decomp_cholesky.cho_solve_banded
scipy.linalg._procrustes.orthogonal_procrustes
scipy.linalg._basic.solveh_banded
scipy.linalg._matfuncs.expm
scipy.linalg._decomp_cholesky.cho_solve
scipy.linalg._decomp_lu.lu_solve
scipy.linalg._basic.matmul_toeplitz
scipy.linalg._special_matrices.hilbert
scipy.linalg._special_matrices.toeplitz
scipy.linalg._decomp_svd.diagsvd
scipy.linalg._special_matrices.hankel
scipy.linalg._special_matrices.circulant
scipy.linalg._decomp_lu.lu_factor
scipy.linalg._special_matrices.fiedler_companion
scipy.linalg._decomp_svd.svd
scipy.linalg._decomp_lu.lu
scipy.linalg._special_matrices.invhilbert
scipy.linalg._basic.solve_triangular
scipy.linalg._decomp_polar.polar
scipy.linalg.lapack.get_lapack_funcs
scipy.linalg._special_matrices.invpascal
scipy.linalg._decomp_schur.schur
scipy.linalg._decomp_cholesky.cholesky
scipy.linalg._basic.pinvh
scipy.linalg._decomp_qz.ordqz
scipy.linalg._special_matrices.convolution_matrix
scipy.linalg._decomp_svd.orth
scipy.linalg._matfuncs.tanhm
scipy.linalg._special_matrices.kron
scipy.linalg._special_matrices.block_diag
scipy.linalg._decomp_qr.rq
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them