scipy 1.8.0 Pypi GitHub Homepage
Other Docs
ParametersRaisesReturnsBackRef
eigvals(a, b=None, overwrite_a=False, check_finite=True, homogeneous_eigvals=False)

Find eigenvalues of a general matrix:

a   vr[:,i] = w[i]        b   vr[:,i]

Parameters

a : (M, M) array_like

A complex or real matrix whose eigenvalues and eigenvectors will be computed.

b : (M, M) array_like, optional

Right-hand side matrix in a generalized eigenvalue problem. If omitted, identity matrix is assumed.

overwrite_a : bool, optional

Whether to overwrite data in a (may improve performance)

check_finite : bool, optional

Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

homogeneous_eigvals : bool, optional

If True, return the eigenvalues in homogeneous coordinates. In this case w is a (2, M) array so that:

w[1,i] a vr[:,i] = w[0,i] b vr[:,i]

Default is False.

Raises

LinAlgError

If eigenvalue computation does not converge

Returns

w : (M,) or (2, M) double or complex ndarray

The eigenvalues, each repeated according to its multiplicity but not in any specific order. The shape is (M,) unless homogeneous_eigvals=True .

Compute eigenvalues from an ordinary or generalized eigenvalue problem.

See Also

eig

eigenvalues and right eigenvectors of general arrays.

eigvals_banded

eigenvalues for symmetric/Hermitian band matrices

eigvalsh

eigenvalues of symmetric or Hermitian arrays

eigvalsh_tridiagonal

eigenvalues of symmetric/Hermitian tridiagonal matrices

Examples

>>> from scipy import linalg
... a = np.array([[0., -1.], [1., 0.]])
... linalg.eigvals(a) array([0.+1.j, 0.-1.j])
>>> b = np.array([[0., 1.], [1., 1.]])
... linalg.eigvals(a, b) array([ 1.+0.j, -1.+0.j])
>>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])
... linalg.eigvals(a, homogeneous_eigvals=True) array([[3.+0.j, 8.+0.j, 7.+0.j], [1.+0.j, 1.+0.j, 1.+0.j]])
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

scipy.linalg._decomp.eigvalsh scipy.linalg._matfuncs.signm scipy.linalg._decomp.eigvals_banded scipy.linalg._decomp.eigvals scipy.linalg._decomp_schur.schur scipy.linalg._special_matrices.fiedler_companion scipy.linalg._decomp.eig

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/linalg/_decomp.py#811
type: <class 'function'>
Commit: