eigvals(a, b=None, overwrite_a=False, check_finite=True, homogeneous_eigvals=False)
Find eigenvalues of a general matrix:
a vr[:,i] = w[i] b vr[:,i]
A complex or real matrix whose eigenvalues and eigenvectors will be computed.
Right-hand side matrix in a generalized eigenvalue problem. If omitted, identity matrix is assumed.
Whether to overwrite data in a (may improve performance)
Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
If True, return the eigenvalues in homogeneous coordinates. In this case w
is a (2, M) array so that:
w[1,i] a vr[:,i] = w[0,i] b vr[:,i]
Default is False.
If eigenvalue computation does not converge
The eigenvalues, each repeated according to its multiplicity but not in any specific order. The shape is (M,) unless homogeneous_eigvals=True
.
Compute eigenvalues from an ordinary or generalized eigenvalue problem.
eig
eigenvalues and right eigenvectors of general arrays.
eigvals_banded
eigenvalues for symmetric/Hermitian band matrices
eigvalsh
eigenvalues of symmetric or Hermitian arrays
eigvalsh_tridiagonal
eigenvalues of symmetric/Hermitian tridiagonal matrices
>>> from scipy import linalg
... a = np.array([[0., -1.], [1., 0.]])
... linalg.eigvals(a) array([0.+1.j, 0.-1.j])
>>> b = np.array([[0., 1.], [1., 1.]])
... linalg.eigvals(a, b) array([ 1.+0.j, -1.+0.j])
>>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])See :
... linalg.eigvals(a, homogeneous_eigvals=True) array([[3.+0.j, 8.+0.j, 7.+0.j], [1.+0.j, 1.+0.j, 1.+0.j]])
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.linalg._decomp.eigvalsh
scipy.linalg._matfuncs.signm
scipy.linalg._decomp.eigvals_banded
scipy.linalg._decomp.eigvals
scipy.linalg._decomp_schur.schur
scipy.linalg._special_matrices.fiedler_companion
scipy.linalg._decomp.eig
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them