eig(a, b=None, left=False, right=True, overwrite_a=False, overwrite_b=False, check_finite=True, homogeneous_eigvals=False)
Find eigenvalues w and right or left eigenvectors of a general matrix:
a vr[:,i] = w[i] b vr[:,i] a.H vl[:,i] = w[i].conj() b.H vl[:,i]
where .H
is the Hermitian conjugation.
A complex or real matrix whose eigenvalues and eigenvectors will be computed.
Right-hand side matrix in a generalized eigenvalue problem. Default is None, identity matrix is assumed.
Whether to calculate and return left eigenvectors. Default is False.
Whether to calculate and return right eigenvectors. Default is True.
Whether to overwrite a
; may improve performance. Default is False.
Whether to overwrite b
; may improve performance. Default is False.
Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
If True, return the eigenvalues in homogeneous coordinates. In this case w
is a (2, M) array so that:
w[1,i] a vr[:,i] = w[0,i] b vr[:,i]
Default is False.
If eigenvalue computation does not converge.
The eigenvalues, each repeated according to its multiplicity. The shape is (M,) unless homogeneous_eigvals=True
.
The normalized left eigenvector corresponding to the eigenvalue w[i]
is the column vl[:,i]. Only returned if left=True
.
The normalized right eigenvector corresponding to the eigenvalue w[i]
is the column vr[:,i]
. Only returned if right=True
.
Solve an ordinary or generalized eigenvalue problem of a square matrix.
eig_banded
eigenvalues and right eigenvectors for symmetric/Hermitian band matrices
eigh
Eigenvalues and right eigenvectors for symmetric/Hermitian arrays.
eigh_tridiagonal
eigenvalues and right eiegenvectors for symmetric/Hermitian tridiagonal matrices
eigvals
eigenvalues of general arrays
>>> from scipy import linalg
... a = np.array([[0., -1.], [1., 0.]])
... linalg.eigvals(a) array([0.+1.j, 0.-1.j])
>>> b = np.array([[0., 1.], [1., 1.]])
... linalg.eigvals(a, b) array([ 1.+0.j, -1.+0.j])
>>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])
... linalg.eigvals(a, homogeneous_eigvals=True) array([[3.+0.j, 8.+0.j, 7.+0.j], [1.+0.j, 1.+0.j, 1.+0.j]])
>>> a = np.array([[0., -1.], [1., 0.]])
... linalg.eigvals(a) == linalg.eig(a)[0] array([ True, True])
>>> linalg.eig(a, left=True, right=False)[1] # normalized left eigenvector array([[-0.70710678+0.j , -0.70710678-0.j ], [-0. +0.70710678j, -0. -0.70710678j]])
>>> linalg.eig(a, left=False, right=True)[1] # normalized right eigenvector array([[0.70710678+0.j , 0.70710678-0.j ], [0. -0.70710678j, 0. +0.70710678j]])See :
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.linalg._decomp.eigvals_banded
scipy.linalg._decomp.eigvals
scipy.linalg._decomp.eigh
scipy.linalg._decomp.eigh_tridiagonal
scipy.linalg._decomp.eig
scipy.linalg._decomp.eig_banded
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them