To remove in the future –– scipy.sparse
.. currentmodule:: scipy.sparse
SciPy 2-D sparse array package for numeric data.
This package is switching to an array interface, compatible with NumPy arrays, from the older matrix interface. We recommend that you use the array objects (:None:None:`bsr_array`, :None:None:`coo_array`, etc.) for all new work.
When using the array interface, please note that:
x * y
no longer performs matrix multiplication, but element-wise multiplication (just like with NumPy arrays). To make code work with both arrays and matrices, use x @ y
for matrix multiplication.
Operations such as :None:None:`sum`, that used to produce dense matrices, now produce arrays, whose multiplication behavior differs similarly.
Sparse arrays currently must be two-dimensional. This also means that all slicing operations on these objects must produce two-dimensional results, or they will result in an error. This will be addressed in a future version.
The construction utilities (:None:None:`eye`, :None:None:`kron`, :None:None:`random`, :None:None:`diags`, etc.) have not yet been ported, but their results can be wrapped into arrays:
A = csr_array(eye(3))
.. autosummary::
:toctree:generated/
bsr_array - Block Sparse Row array
coo_array - A sparse array in COOrdinate format
csc_array - Compressed Sparse Column array
csr_array - Compressed Sparse Row array
dia_array - Sparse array with DIAgonal storage
dok_array - Dictionary Of Keys based sparse array
lil_array - Row-based list of lists sparse array
.. autosummary::
:toctree:generated/
bsr_matrix - Block Sparse Row matrix
coo_matrix - A sparse matrix in COOrdinate format
csc_matrix - Compressed Sparse Column matrix
csr_matrix - Compressed Sparse Row matrix
dia_matrix - Sparse matrix with DIAgonal storage
dok_matrix - Dictionary Of Keys based sparse matrix
lil_matrix - Row-based list of lists sparse matrix
spmatrix - Sparse matrix base class
Building sparse matrices:
.. autosummary::
:toctree:generated/
eye - Sparse MxN matrix whose k-th diagonal is all ones
identity - Identity matrix in sparse format
kron - kronecker product of two sparse matrices
kronsum - kronecker sum of sparse matrices
diags - Return a sparse matrix from diagonals
spdiags - Return a sparse matrix from diagonals
block_diag - Build a block diagonal sparse matrix
tril - Lower triangular portion of a matrix in sparse format
triu - Upper triangular portion of a matrix in sparse format
bmat - Build a sparse matrix from sparse sub-blocks
hstack - Stack sparse matrices horizontally (column wise)
vstack - Stack sparse matrices vertically (row wise)
rand - Random values in a given shape
random - Random values in a given shape
Save and load sparse matrices:
.. autosummary::
:toctree:generated/
save_npz - Save a sparse matrix to a file using ``.npz`` format.
load_npz - Load a sparse matrix from a file using ``.npz`` format.
Sparse matrix tools:
.. autosummary::
:toctree:generated/
find
Identifying sparse matrices:
.. autosummary::
:toctree:generated/
issparse
isspmatrix
isspmatrix_csc
isspmatrix_csr
isspmatrix_bsr
isspmatrix_lil
isspmatrix_dok
isspmatrix_coo
isspmatrix_dia
.. autosummary::
csgraph - Compressed sparse graph routines
linalg - sparse linear algebra routines
.. autosummary::
:toctree:generated/
SparseEfficiencyWarning
SparseWarning
There are seven available sparse matrix types:
csc_matrix: Compressed Sparse Column format
csr_matrix: Compressed Sparse Row format
bsr_matrix: Block Sparse Row format
lil_matrix: List of Lists format
dok_matrix: Dictionary of Keys format
coo_matrix: COOrdinate format (aka IJV, triplet format)
dia_matrix: DIAgonal format
To construct a matrix efficiently, use either dok_matrix or lil_matrix. The lil_matrix class supports basic slicing and fancy indexing with a similar syntax to NumPy arrays. As illustrated below, the COO format may also be used to efficiently construct matrices. Despite their similarity to NumPy arrays, it is strongly discouraged to use NumPy functions directly on these matrices because NumPy may not properly convert them for computations, leading to unexpected (and incorrect) results. If you do want to apply a NumPy function to these matrices, first check if SciPy has its own implementation for the given sparse matrix class, or convert the
sparse matrix to a NumPy array (e.g., using the :None:None:`toarray()` method of the class) first before applying the method.
To perform manipulations such as multiplication or inversion, first convert the matrix to either CSC or CSR format. The lil_matrix format is row-based, so conversion to CSR is efficient, whereas conversion to CSC is less so.
All conversions among the CSR, CSC, and COO formats are efficient, linear-time operations.
To do a vector product between a sparse matrix and a vector simply use the matrix :None:None:`dot` method, as described in its docstring:
>>> import numpy as np >>> from scipy.sparse import csr_matrix >>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]]) >>> v = np.array([1, 0, -1]) >>> A.dot(v) array([ 1, -3, -1], dtype=int64)
therefore using it will result on unexpected results or errors. The corresponding dense array should be obtained first instead:
>>> np.dot(A.toarray(), v) array([ 1, -3, -1], dtype=int64)
but then all the performance advantages would be lost.
The CSR format is specially suitable for fast matrix vector products.
Construct a 1000x1000 lil_matrix and add some values to it:
>>> from scipy.sparse import lil_matrix >>> from scipy.sparse.linalg import spsolve >>> from numpy.linalg import solve, norm >>> from numpy.random import rand
>>> A = lil_matrix((1000, 1000)) >>> A[0, :100] = rand(100) >>> A[1, 100:200] = A[0, :100] >>> A.setdiag(rand(1000))
Now convert it to CSR format and solve A x = b for x:
>>> A = A.tocsr() >>> b = rand(1000) >>> x = spsolve(A, b)
Convert it to a dense matrix and solve, and check that the result is the same:
>>> x_ = solve(A.toarray(), b)
Now we can compute norm of the error with:
>>> err = norm(x-x_) >>> err < 1e-10 True
It should be small :)
Construct a matrix in COO format:
>>> from scipy import sparse >>> from numpy import array >>> I = array([0,3,1,0]) >>> J = array([0,3,1,2]) >>> V = array([4,5,7,9]) >>> A = sparse.coo_matrix((V,(I,J)),shape=(4,4))
Notice that the indices do not need to be sorted.
Duplicate (i,j) entries are summed when converting to CSR or CSC.
>>> I = array([0,0,1,3,1,0,0]) >>> J = array([0,2,1,3,1,0,0]) >>> V = array([1,1,1,1,1,1,1]) >>> B = sparse.coo_matrix((V,(I,J)),shape=(4,4)).tocsr()
This is useful for constructing finite-element stiffness and mass matrices.
CSR column indices are not necessarily sorted. Likewise for CSC row indices. Use the .sorted_indices() and .sort_indices() methods when sorted indices are required (e.g., when passing data to other libraries).
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.sparse._base.spmatrix.nonzeroscipy.sparse.csgraph._shortest_path.bellman_fordscipy.sparse.linalg._dsolve.linsolve.spsolvescipy.sparse._dia.isspmatrix_diascipy.sparse._coo.coo_matrix.tocsrscipy.sparse._matrix_io.load_npzscipy.sparse.linalg._isolve.iterative.gmresscipy.sparse._csc.csc_matrixscipy.sparse.csgraph._tools.csgraph_to_maskedscipy.sparse._dia.dia_matrix.diagonalscipy.sparse._bsr.bsr_matrixscipy.sparse.linalg._matfuncs.invscipy.sparse._arrays.dia_arrayscipy.sparse.csgraph._shortest_path.shortest_pathscipy.sparse._construct.bmatscipy.sparse._construct.spdiagsscipy.sparse._construct.eyescipy.sparse._coo.coo_matrix.diagonalscipy.sparse._construct.identityscipy.sparse._csc.isspmatrix_cscscipy.sparse.linalg._isolve.minres.minresscipy.sparse.csgraph._tools.csgraph_from_maskedscipy.sparse.csgraph._tools.csgraph_from_densescipy.sparse.linalg._isolve.lsmr.lsmrscipy.sparse._construct.randscipy.sparse.csgraph._laplacian.laplacianscipy.sparse._coo.isspmatrix_cooscipy.sparse.csgraph._traversal.depth_first_orderscipy.sparse.linalg._eigen.lobpcg.lobpcg.lobpcgscipy.sparse._arrays.coo_arrayscipy.sparse._construct.hstackscipy.sparse.csgraph._traversal.connected_componentsscipy.sparse.linalg._dsolve.linsolve.spiluscipy.sparse._csc.csc_matrix.nonzeroscipy.sparse._dok.isspmatrix_dokscipy.sparse.linalg._expm_multiply.expm_multiplyscipy.sparse._construct.randomscipy.sparse.linalg._dsolve.linsolve.spluscipy.sparse.csgraph._shortest_path.johnsonscipy.sparse._construct.block_diagscipy.sparse.linalg._matfuncs.expmscipy.sparse._dia.dia_matrixscipy.sparse.linalg._eigen.arpack.arpack.eigsscipy.sparse._construct.kronscipy.sparse._arrays.bsr_arrayscipy.sparse.linalg._isolve.lgmres.lgmresscipy.sparse.csgraph._shortest_path.dijkstrascipy.sparse.csgraph._tools.reconstruct_pathscipy.sparse._construct.vstackscipy.sparse._compressed._cs_matrix.diagonalscipy.sparse._dok.dok_matrixscipy.sparse._base.spmatrix.diagonalscipy.sparse.csgraph._tools.csgraph_masked_from_densescipy.sparse._csr.csr_matrixscipy.sparse.linalg._eigen.arpack.arpack.eigshscipy.sparse._csr.isspmatrix_csrscipy.sparse.csgraph._reordering.reverse_cuthill_mckeescipy.sparse.csgraph._reordering.structural_rankscipy.sparse.linalg._eigen._svds.svdsscipy.sparse._construct.diagsscipy.sparse.linalg._isolve.lsqr.lsqrscipy.sparse.linalg._isolve.tfqmr.tfqmrscipy.sparse.linalg._norm.normscipy.sparse.linalg._interface.LinearOperatorscipy.sparse.linalg._interface.aslinearoperatorscipy.sparse._extract.trilscipy.sparse._arrays.csr_arrayscipy.sparse.linalg._isolve.iterative.qmrscipy.sparse._arrays.csc_arrayscipy.sparse._bsr.bsr_matrix.diagonalscipy.sparse.csgraph._flow.maximum_flowscipy.sparse.csgraph._traversal.breadth_first_orderscipy.sparse._arrays.dok_arrayscipy.sparse._extract.triuscipy.sparse._coo.coo_matrixscipy.sparse._base.spmatrix.dotscipy.sparse._extract.findscipy.sparse.linalg._onenormest.onenormestscipy.sparse.csgraph._shortest_path.floyd_warshallscipy.sparse.csgraph._matching.min_weight_full_bipartite_matchingscipy.sparse.csgraph._matching.maximum_bipartite_matchingscipy.sparse.csgraph._tools.csgraph_to_densescipy.sparse._coo.coo_matrix.tocscscipy.sparse._matrix_io.save_npzscipy.sparse._lil.isspmatrix_lilscipy.sparse.linalg._dsolve.linsolve.factorizedscipy.sparse.linalg._dsolve.linsolve.spsolve_triangularscipy.sparse._bsr.isspmatrix_bsrscipy.sparse._base.isspmatrixscipy.sparse.csgraph._tools.construct_dist_matrixpandas.core.dtypes.common.is_scipy_sparsepandas.core.dtypes.common.is_sparsepandas.core.dtypes.common.is_extension_typeHover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them