To remove in the future –– scipy.sparse
.. currentmodule:: scipy.sparse
SciPy 2-D sparse array package for numeric data.
This package is switching to an array interface, compatible with NumPy arrays, from the older matrix interface. We recommend that you use the array objects (:None:None:`bsr_array`
, :None:None:`coo_array`
, etc.) for all new work.
When using the array interface, please note that:
x * y
no longer performs matrix multiplication, but element-wise multiplication (just like with NumPy arrays). To make code work with both arrays and matrices, use x @ y
for matrix multiplication.
Operations such as :None:None:`sum`
, that used to produce dense matrices, now produce arrays, whose multiplication behavior differs similarly.
Sparse arrays currently must be two-dimensional. This also means that all slicing operations on these objects must produce two-dimensional results, or they will result in an error. This will be addressed in a future version.
The construction utilities (:None:None:`eye`
, :None:None:`kron`
, :None:None:`random`
, :None:None:`diags`
, etc.) have not yet been ported, but their results can be wrapped into arrays:
A = csr_array(eye(3))
.. autosummary:: :toctree:generated/ bsr_array - Block Sparse Row array coo_array - A sparse array in COOrdinate format csc_array - Compressed Sparse Column array csr_array - Compressed Sparse Row array dia_array - Sparse array with DIAgonal storage dok_array - Dictionary Of Keys based sparse array lil_array - Row-based list of lists sparse array
.. autosummary:: :toctree:generated/ bsr_matrix - Block Sparse Row matrix coo_matrix - A sparse matrix in COOrdinate format csc_matrix - Compressed Sparse Column matrix csr_matrix - Compressed Sparse Row matrix dia_matrix - Sparse matrix with DIAgonal storage dok_matrix - Dictionary Of Keys based sparse matrix lil_matrix - Row-based list of lists sparse matrix spmatrix - Sparse matrix base class
Building sparse matrices:
.. autosummary:: :toctree:generated/ eye - Sparse MxN matrix whose k-th diagonal is all ones identity - Identity matrix in sparse format kron - kronecker product of two sparse matrices kronsum - kronecker sum of sparse matrices diags - Return a sparse matrix from diagonals spdiags - Return a sparse matrix from diagonals block_diag - Build a block diagonal sparse matrix tril - Lower triangular portion of a matrix in sparse format triu - Upper triangular portion of a matrix in sparse format bmat - Build a sparse matrix from sparse sub-blocks hstack - Stack sparse matrices horizontally (column wise) vstack - Stack sparse matrices vertically (row wise) rand - Random values in a given shape random - Random values in a given shape
Save and load sparse matrices:
.. autosummary:: :toctree:generated/ save_npz - Save a sparse matrix to a file using ``.npz`` format. load_npz - Load a sparse matrix from a file using ``.npz`` format.
Sparse matrix tools:
.. autosummary:: :toctree:generated/ find
Identifying sparse matrices:
.. autosummary:: :toctree:generated/ issparse isspmatrix isspmatrix_csc isspmatrix_csr isspmatrix_bsr isspmatrix_lil isspmatrix_dok isspmatrix_coo isspmatrix_dia
.. autosummary:: csgraph - Compressed sparse graph routines linalg - sparse linear algebra routines
.. autosummary:: :toctree:generated/ SparseEfficiencyWarning SparseWarning
There are seven available sparse matrix types:
csc_matrix: Compressed Sparse Column format
csr_matrix: Compressed Sparse Row format
bsr_matrix: Block Sparse Row format
lil_matrix: List of Lists format
dok_matrix: Dictionary of Keys format
coo_matrix: COOrdinate format (aka IJV, triplet format)
dia_matrix: DIAgonal format
To construct a matrix efficiently, use either dok_matrix or lil_matrix. The lil_matrix class supports basic slicing and fancy indexing with a similar syntax to NumPy arrays. As illustrated below, the COO format may also be used to efficiently construct matrices. Despite their similarity to NumPy arrays, it is strongly discouraged to use NumPy functions directly on these matrices because NumPy may not properly convert them for computations, leading to unexpected (and incorrect) results. If you do want to apply a NumPy function to these matrices, first check if SciPy has its own implementation for the given sparse matrix class, or convert the
sparse matrix to a NumPy array (e.g., using the :None:None:`toarray()`
method of the class) first before applying the method.
To perform manipulations such as multiplication or inversion, first convert the matrix to either CSC or CSR format. The lil_matrix format is row-based, so conversion to CSR is efficient, whereas conversion to CSC is less so.
All conversions among the CSR, CSC, and COO formats are efficient, linear-time operations.
To do a vector product between a sparse matrix and a vector simply use the matrix :None:None:`dot`
method, as described in its docstring:
>>> import numpy as np >>> from scipy.sparse import csr_matrix >>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]]) >>> v = np.array([1, 0, -1]) >>> A.dot(v) array([ 1, -3, -1], dtype=int64)
therefore using it will result on unexpected results or errors. The corresponding dense array should be obtained first instead:
>>> np.dot(A.toarray(), v) array([ 1, -3, -1], dtype=int64)
but then all the performance advantages would be lost.
The CSR format is specially suitable for fast matrix vector products.
Construct a 1000x1000 lil_matrix and add some values to it:
>>> from scipy.sparse import lil_matrix >>> from scipy.sparse.linalg import spsolve >>> from numpy.linalg import solve, norm >>> from numpy.random import rand
>>> A = lil_matrix((1000, 1000)) >>> A[0, :100] = rand(100) >>> A[1, 100:200] = A[0, :100] >>> A.setdiag(rand(1000))
Now convert it to CSR format and solve A x = b for x:
>>> A = A.tocsr() >>> b = rand(1000) >>> x = spsolve(A, b)
Convert it to a dense matrix and solve, and check that the result is the same:
>>> x_ = solve(A.toarray(), b)
Now we can compute norm of the error with:
>>> err = norm(x-x_) >>> err < 1e-10 True
It should be small :)
Construct a matrix in COO format:
>>> from scipy import sparse >>> from numpy import array >>> I = array([0,3,1,0]) >>> J = array([0,3,1,2]) >>> V = array([4,5,7,9]) >>> A = sparse.coo_matrix((V,(I,J)),shape=(4,4))
Notice that the indices do not need to be sorted.
Duplicate (i,j) entries are summed when converting to CSR or CSC.
>>> I = array([0,0,1,3,1,0,0]) >>> J = array([0,2,1,3,1,0,0]) >>> V = array([1,1,1,1,1,1,1]) >>> B = sparse.coo_matrix((V,(I,J)),shape=(4,4)).tocsr()
This is useful for constructing finite-element stiffness and mass matrices.
CSR column indices are not necessarily sorted. Likewise for CSC row indices. Use the .sorted_indices() and .sort_indices() methods when sorted indices are required (e.g., when passing data to other libraries).
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.sparse._base.spmatrix.nonzero
scipy.sparse.csgraph._shortest_path.bellman_ford
scipy.sparse.linalg._dsolve.linsolve.spsolve
scipy.sparse._dia.isspmatrix_dia
scipy.sparse._coo.coo_matrix.tocsr
scipy.sparse._matrix_io.load_npz
scipy.sparse.linalg._isolve.iterative.gmres
scipy.sparse._csc.csc_matrix
scipy.sparse.csgraph._tools.csgraph_to_masked
scipy.sparse._dia.dia_matrix.diagonal
scipy.sparse._bsr.bsr_matrix
scipy.sparse.linalg._matfuncs.inv
scipy.sparse._arrays.dia_array
scipy.sparse.csgraph._shortest_path.shortest_path
scipy.sparse._construct.bmat
scipy.sparse._construct.spdiags
scipy.sparse._construct.eye
scipy.sparse._coo.coo_matrix.diagonal
scipy.sparse._construct.identity
scipy.sparse._csc.isspmatrix_csc
scipy.sparse.linalg._isolve.minres.minres
scipy.sparse.csgraph._tools.csgraph_from_masked
scipy.sparse.csgraph._tools.csgraph_from_dense
scipy.sparse.linalg._isolve.lsmr.lsmr
scipy.sparse._construct.rand
scipy.sparse.csgraph._laplacian.laplacian
scipy.sparse._coo.isspmatrix_coo
scipy.sparse.csgraph._traversal.depth_first_order
scipy.sparse.linalg._eigen.lobpcg.lobpcg.lobpcg
scipy.sparse._arrays.coo_array
scipy.sparse._construct.hstack
scipy.sparse.csgraph._traversal.connected_components
scipy.sparse.linalg._dsolve.linsolve.spilu
scipy.sparse._csc.csc_matrix.nonzero
scipy.sparse._dok.isspmatrix_dok
scipy.sparse.linalg._expm_multiply.expm_multiply
scipy.sparse._construct.random
scipy.sparse.linalg._dsolve.linsolve.splu
scipy.sparse.csgraph._shortest_path.johnson
scipy.sparse._construct.block_diag
scipy.sparse.linalg._matfuncs.expm
scipy.sparse._dia.dia_matrix
scipy.sparse.linalg._eigen.arpack.arpack.eigs
scipy.sparse._construct.kron
scipy.sparse._arrays.bsr_array
scipy.sparse.linalg._isolve.lgmres.lgmres
scipy.sparse.csgraph._shortest_path.dijkstra
scipy.sparse.csgraph._tools.reconstruct_path
scipy.sparse._construct.vstack
scipy.sparse._compressed._cs_matrix.diagonal
scipy.sparse._dok.dok_matrix
scipy.sparse._base.spmatrix.diagonal
scipy.sparse.csgraph._tools.csgraph_masked_from_dense
scipy.sparse._csr.csr_matrix
scipy.sparse.linalg._eigen.arpack.arpack.eigsh
scipy.sparse._csr.isspmatrix_csr
scipy.sparse.csgraph._reordering.reverse_cuthill_mckee
scipy.sparse.csgraph._reordering.structural_rank
scipy.sparse.linalg._eigen._svds.svds
scipy.sparse._construct.diags
scipy.sparse.linalg._isolve.lsqr.lsqr
scipy.sparse.linalg._isolve.tfqmr.tfqmr
scipy.sparse.linalg._norm.norm
scipy.sparse.linalg._interface.LinearOperator
scipy.sparse.linalg._interface.aslinearoperator
scipy.sparse._extract.tril
scipy.sparse._arrays.csr_array
scipy.sparse.linalg._isolve.iterative.qmr
scipy.sparse._arrays.csc_array
scipy.sparse._bsr.bsr_matrix.diagonal
scipy.sparse.csgraph._flow.maximum_flow
scipy.sparse.csgraph._traversal.breadth_first_order
scipy.sparse._arrays.dok_array
scipy.sparse._extract.triu
scipy.sparse._coo.coo_matrix
scipy.sparse._base.spmatrix.dot
scipy.sparse._extract.find
scipy.sparse.linalg._onenormest.onenormest
scipy.sparse.csgraph._shortest_path.floyd_warshall
scipy.sparse.csgraph._matching.min_weight_full_bipartite_matching
scipy.sparse.csgraph._matching.maximum_bipartite_matching
scipy.sparse.csgraph._tools.csgraph_to_dense
scipy.sparse._coo.coo_matrix.tocsc
scipy.sparse._matrix_io.save_npz
scipy.sparse._lil.isspmatrix_lil
scipy.sparse.linalg._dsolve.linsolve.factorized
scipy.sparse.linalg._dsolve.linsolve.spsolve_triangular
scipy.sparse._bsr.isspmatrix_bsr
scipy.sparse._base.isspmatrix
scipy.sparse.csgraph._tools.construct_dist_matrix
pandas.core.dtypes.common.is_scipy_sparse
pandas.core.dtypes.common.is_sparse
pandas.core.dtypes.common.is_extension_type
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them