scipy 1.8.0 Pypi GitHub Homepage
Other Docs
AttributesNotesBackRef

Attributes

dtype : dtype

Data type of the array

shape : 2-tuple

Shape of the array

ndim : int

Number of dimensions (this is always 2)

nnz :

Number of stored values, including explicit zeros

data :

COO format data array of the array

row :

COO format row index array of the array

col :

COO format column index array of the array

Also known as the 'ijv' or 'triplet' format.

This can be instantiated in several ways:

coo_array(D)

with a dense array D

coo_array(S)

with another sparse array S (equivalent to S.tocoo())

coo_array((M, N), [dtype])

to construct an empty array with shape (M, N) dtype is optional, defaulting to dtype='d'.

coo_array((data, (i, j)), [shape=(M, N)])

to construct from three arrays:

  1. data[:] the entries of the array, in any order

  2. i[:] the row indices of the array entries

  3. j[:] the column indices of the array entries

Where A[i[k], j[k]] = data[k] . When shape is not specified, it is inferred from the index arrays

Notes

Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and array power.

Advantages of the COO format

  • facilitates fast conversion among sparse formats

  • permits duplicate entries (see example)

  • very fast conversion to and from CSR/CSC formats

Disadvantages of the COO format

  • does not directly support:

    • arithmetic operations

    • slicing

Intended Usage

  • COO is a fast format for constructing sparse arrays

  • Once a array has been constructed, convert to CSR or CSC format for fast arithmetic and array vector operations

  • By default when converting to CSR or CSC format, duplicate (i,j) entries will be summed together. This facilitates efficient construction of finite element arrays and the like. (see example)

A sparse array in COOrdinate format.

Examples

>>> # Constructing an empty array
... from scipy.sparse import coo_array
... coo_array((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> # Constructing a array using ijv format
... row = np.array([0, 3, 1, 0])
... col = np.array([0, 3, 1, 2])
... data = np.array([4, 5, 7, 9])
... coo_array((data, (row, col)), shape=(4, 4)).toarray() array([[4, 0, 9, 0], [0, 7, 0, 0], [0, 0, 0, 0], [0, 0, 0, 5]])
>>> # Constructing a array with duplicate indices
... row = np.array([0, 0, 1, 3, 1, 0, 0])
... col = np.array([0, 2, 1, 3, 1, 0, 0])
... data = np.array([1, 1, 1, 1, 1, 1, 1])
... coo = coo_array((data, (row, col)), shape=(4, 4))
... # Duplicate indices are maintained until implicitly or explicitly summed
... np.max(coo.data) 1
>>> coo.toarray()
array([[3, 0, 1, 0],
       [0, 2, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 1]])
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

scipy.sparse._arrays.coo_array networkx.convert_matrix.to_scipy_sparse_array

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/sparse/_arrays.py#64
type: <class 'type'>
Commit: