Data type of the array
Shape of the array
Number of dimensions (this is always 2)
Number of stored values, including explicit zeros
DIA format data array of the array
DIA format offset array of the array
This can be instantiated in several ways:
dia_array(D)
with a dense array
dia_array(S)
with another sparse array S (equivalent to S.todia())
dia_array((M, N), [dtype])
to construct an empty array with shape (M, N), dtype is optional, defaulting to dtype='d'.
dia_array((data, offsets), shape=(M, N))
where the data[k,:]
stores the diagonal entries for diagonal offsets[k]
(See example below)
Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and array power.
Sparse array with DIAgonal storage
>>> import numpy as np
... from scipy.sparse import dia_array
... dia_array((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0)
... offsets = np.array([0, -1, 2])
... dia_array((data, offsets), shape=(4, 4)).toarray() array([[1, 0, 3, 0], [1, 2, 0, 4], [0, 2, 3, 0], [0, 0, 3, 4]])
>>> from scipy.sparse import dia_arraySee :
... n = 10
... ex = np.ones(n)
... data = np.array([ex, 2 * ex, ex])
... offsets = np.array([-1, 0, 1])
... dia_array((data, offsets), shape=(n, n)).toarray() array([[2., 1., 0., ..., 0., 0., 0.], [1., 2., 1., ..., 0., 0., 0.], [0., 1., 2., ..., 0., 0., 0.], ..., [0., 0., 0., ..., 2., 1., 0.], [0., 0., 0., ..., 1., 2., 1.], [0., 0., 0., ..., 0., 1., 2.]])
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.sparse._arrays.dia_array
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them