To remove in the future –– scipy.sparse.linalg
.. currentmodule:: scipy.sparse.linalg
.. autosummary:: :toctree:generated/ LinearOperator -- abstract representation of a linear operator aslinearoperator -- convert an object to an abstract linear operator
.. autosummary:: :toctree:generated/ inv -- compute the sparse matrix inverse expm -- compute the sparse matrix exponential expm_multiply -- compute the product of a matrix exponential and a matrix
.. autosummary:: :toctree:generated/ norm -- Norm of a sparse matrix onenormest -- Estimate the 1-norm of a sparse matrix
Direct methods for linear equation systems:
.. autosummary:: :toctree:generated/ spsolve -- Solve the sparse linear system Ax=b spsolve_triangular -- Solve the sparse linear system Ax=b for a triangular matrix factorized -- Pre-factorize matrix to a function solving a linear system MatrixRankWarning -- Warning on exactly singular matrices use_solver -- Select direct solver to use
Iterative methods for linear equation systems:
.. autosummary:: :toctree:generated/ bicg -- Use BIConjugate Gradient iteration to solve A x = b bicgstab -- Use BIConjugate Gradient STABilized iteration to solve A x = b cg -- Use Conjugate Gradient iteration to solve A x = b cgs -- Use Conjugate Gradient Squared iteration to solve A x = b gmres -- Use Generalized Minimal RESidual iteration to solve A x = b lgmres -- Solve a matrix equation using the LGMRES algorithm minres -- Use MINimum RESidual iteration to solve Ax = b qmr -- Use Quasi-Minimal Residual iteration to solve A x = b gcrotmk -- Solve a matrix equation using the GCROT(m,k) algorithm tfqmr -- Use Transpose-Free Quasi-Minimal Residual iteration to solve A x = b
Iterative methods for least-squares problems:
.. autosummary:: :toctree:generated/ lsqr -- Find the least-squares solution to a sparse linear equation system lsmr -- Find the least-squares solution to a sparse linear equation system
Eigenvalue problems:
.. autosummary:: :toctree:generated/ eigs -- Find k eigenvalues and eigenvectors of the square matrix A eigsh -- Find k eigenvalues and eigenvectors of a symmetric matrix lobpcg -- Solve symmetric partial eigenproblems with optional preconditioning
Singular values problems:
.. autosummary:: :toctree:generated/ svds -- Compute k singular values/vectors for a sparse matrix
The svds
function supports the following solvers:
.. toctree:: sparse.linalg.svds-arpack sparse.linalg.svds-lobpcg sparse.linalg.svds-propack
Complete or incomplete LU factorizations
.. autosummary:: :toctree:generated/ splu -- Compute a LU decomposition for a sparse matrix spilu -- Compute an incomplete LU decomposition for a sparse matrix SuperLU -- Object representing an LU factorization
.. autosummary:: :toctree:generated/ ArpackNoConvergence ArpackError
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.sparse.linalg._eigen.lobpcg.lobpcg.lobpcg
scipy.sparse.linalg._dsolve.linsolve.spsolve
scipy.optimize._nonlin.KrylovJacobian
scipy.sparse.linalg._eigen.arpack.arpack.eigsh
scipy.sparse.linalg._isolve.iterative.gmres
scipy.optimize._nonlin.newton_krylov
scipy.sparse.linalg._dsolve.linsolve.spilu
scipy.sparse.linalg._onenormest.onenormest
scipy.sparse.linalg._matfuncs.inv
scipy.sparse.linalg._eigen._svds.svds
scipy.sparse.linalg._expm_multiply.expm_multiply
scipy.sparse.linalg._isolve.lsqr.lsqr
scipy.sparse.linalg._dsolve.linsolve.splu
scipy.sparse.linalg._isolve.tfqmr.tfqmr
scipy.sparse.linalg._norm.norm
scipy.sparse.linalg._interface.LinearOperator
scipy.sparse.linalg._interface.aslinearoperator
scipy.sparse.linalg._dsolve.linsolve.factorized
scipy.sparse.linalg._isolve.minres.minres
scipy.sparse.linalg._matfuncs.expm
scipy.sparse.linalg._dsolve.linsolve.spsolve_triangular
scipy.sparse.linalg._isolve.lsmr.lsmr
scipy.sparse.linalg._eigen.arpack.arpack.eigs
scipy.sparse.linalg._isolve.iterative.qmr
scipy.sparse.linalg._isolve.lgmres.lgmres
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them