Data type of the array
Shape of the array
Number of dimensions (this is always 2)
Number of stored values, including explicit zeros
CSR format data array of the array
CSR format index array of the array
CSR format index pointer array of the array
Whether indices are sorted
This can be instantiated in several ways:
csr_array(D)
with a dense array or rank-2 ndarray D
csr_array(S)
with another sparse array S (equivalent to S.tocsr())
csr_array((M, N), [dtype])
to construct an empty array with shape (M, N) dtype is optional, defaulting to dtype='d'.
csr_array((data, (row_ind, col_ind)), [shape=(M, N)])
where data
, row_ind
and col_ind
satisfy the relationship a[row_ind[k], col_ind[k]] = data[k]
.
csr_array((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indptr[i+1]]
and their corresponding values are stored in data[indptr[i]:indptr[i+1]]
. If the shape parameter is not supplied, the array dimensions are inferred from the index arrays.
Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and array power.
Advantages of the CSR format
efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
efficient row slicing
fast array vector products
Disadvantages of the CSR format
slow column slicing operations (consider CSC)
changes to the sparsity structure are expensive (consider LIL or DOK)
Compressed Sparse Row array
>>> import numpy as np
... from scipy.sparse import csr_array
... csr_array((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2])
... col = np.array([0, 2, 2, 0, 1, 2])
... data = np.array([1, 2, 3, 4, 5, 6])
... csr_array((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6])
... indices = np.array([0, 2, 2, 0, 1, 2])
... data = np.array([1, 2, 3, 4, 5, 6])
... csr_array((data, indices, indptr), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])
Duplicate entries are summed together:
>>> row = np.array([0, 1, 2, 0])
... col = np.array([0, 1, 1, 0])
... data = np.array([1, 2, 4, 8])
... csr_array((data, (row, col)), shape=(3, 3)).toarray() array([[9, 0, 0], [0, 2, 0], [0, 4, 0]])
As an example of how to construct a CSR array incrementally, the following snippet builds a term-document array from texts:
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
... indptr = [0]
... indices = []
... data = []
... vocabulary = {}
... for d in docs:
... for term in d:
... index = vocabulary.setdefault(term, len(vocabulary))
... indices.append(index)
... data.append(1)
... indptr.append(len(indices)) ...
>>> csr_array((data, indices, indptr), dtype=int).toarray() array([[2, 1, 0, 0], [0, 1, 1, 1]])See :
The following pages refer to to this document either explicitly or contain code examples using this.
networkx.convert_matrix.from_scipy_sparse_array
scipy.sparse._arrays.csr_array
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them