scipy 1.8.0 Pypi GitHub Homepage
Other Docs
AttributesNotesBackRef

Attributes

dtype : dtype

Data type of the array

shape : 2-tuple

Shape of the array

ndim : int

Number of dimensions (this is always 2)

nnz :

Number of stored values, including explicit zeros

data :

CSR format data array of the array

indices :

CSR format index array of the array

indptr :

CSR format index pointer array of the array

has_sorted_indices :

Whether indices are sorted

This can be instantiated in several ways:

csr_array(D)

with a dense array or rank-2 ndarray D

csr_array(S)

with another sparse array S (equivalent to S.tocsr())

csr_array((M, N), [dtype])

to construct an empty array with shape (M, N) dtype is optional, defaulting to dtype='d'.

csr_array((data, (row_ind, col_ind)), [shape=(M, N)])

where data , row_ind and col_ind satisfy the relationship a[row_ind[k], col_ind[k]] = data[k] .

csr_array((data, indices, indptr), [shape=(M, N)])

is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]] . If the shape parameter is not supplied, the array dimensions are inferred from the index arrays.

Notes

Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and array power.

Advantages of the CSR format

  • efficient arithmetic operations CSR + CSR, CSR * CSR, etc.

  • efficient row slicing

  • fast array vector products

Disadvantages of the CSR format

  • slow column slicing operations (consider CSC)

  • changes to the sparsity structure are expensive (consider LIL or DOK)

Compressed Sparse Row array

Examples

>>> import numpy as np
... from scipy.sparse import csr_array
... csr_array((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2])
... col = np.array([0, 2, 2, 0, 1, 2])
... data = np.array([1, 2, 3, 4, 5, 6])
... csr_array((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6])
... indices = np.array([0, 2, 2, 0, 1, 2])
... data = np.array([1, 2, 3, 4, 5, 6])
... csr_array((data, indices, indptr), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])

Duplicate entries are summed together:

>>> row = np.array([0, 1, 2, 0])
... col = np.array([0, 1, 1, 0])
... data = np.array([1, 2, 4, 8])
... csr_array((data, (row, col)), shape=(3, 3)).toarray() array([[9, 0, 0], [0, 2, 0], [0, 4, 0]])

As an example of how to construct a CSR array incrementally, the following snippet builds a term-document array from texts:

>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
... indptr = [0]
... indices = []
... data = []
... vocabulary = {}
... for d in docs:
...  for term in d:
...  index = vocabulary.setdefault(term, len(vocabulary))
...  indices.append(index)
...  data.append(1)
...  indptr.append(len(indices)) ...
>>> csr_array((data, indices, indptr), dtype=int).toarray()
array([[2, 1, 0, 0],
       [0, 1, 1, 1]])
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

networkx.convert_matrix.from_scipy_sparse_array scipy.sparse._arrays.csr_array

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/sparse/_arrays.py#72
type: <class 'type'>
Commit: