connected_components(csgraph, directed=True, connection='weak', return_labels=True)
The N x N matrix representing the compressed sparse graph. The input csgraph will be converted to csr format for the calculation.
If True (default), then operate on a directed graph: only move from point i to point j along paths csgraph[i, j]. If False, then find the shortest path on an undirected graph: the algorithm can progress from point i to j along csgraph[i, j] or csgraph[j, i].
['weak'|'strong']. For directed graphs, the type of connection to use. Nodes i and j are strongly connected if a path exists both from i to j and from j to i. A directed graph is weakly connected if replacing all of its directed edges with undirected edges produces a connected (undirected) graph. If directed == False, this keyword is not referenced.
If True (default), then return the labels for each of the connected components.
The number of connected components.
The length-N array of labels of the connected components.
Analyze the connected components of a sparse graph
>>> from scipy.sparse import csr_matrix
... from scipy.sparse.csgraph import connected_components
>>> graph = [
... [0, 1, 1, 0, 0],
... [0, 0, 1, 0, 0],
... [0, 0, 0, 0, 0],
... [0, 0, 0, 0, 1],
... [0, 0, 0, 0, 0]
... ]
... graph = csr_matrix(graph)
... print(graph) (0, 1) 1 (0, 2) 1 (1, 2) 1 (3, 4) 1
>>> n_components, labels = connected_components(csgraph=graph, directed=False, return_labels=True)
... n_components 2
>>> labels array([0, 0, 0, 1, 1], dtype=int32)See :
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.sparse.csgraph._traversal.connected_components
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them