Data type of the matrix
Shape of the matrix
Number of dimensions (this is always 2)
Number of stored values, including explicit zeros
CSR format data array of the matrix
CSR format index array of the matrix
CSR format index pointer array of the matrix
Whether indices are sorted
This can be instantiated in several ways:
csr_matrix(D)
with a dense matrix or rank-2 ndarray D
csr_matrix(S)
with another sparse matrix S (equivalent to S.tocsr())
csr_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.
csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where data
, row_ind
and col_ind
satisfy the relationship a[row_ind[k], col_ind[k]] = data[k]
.
csr_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSR representation where the column indices for row i are stored in indices[indptr[i]:indptr[i+1]]
and their corresponding values are stored in data[indptr[i]:indptr[i+1]]
. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Advantages of the CSR format
efficient arithmetic operations CSR + CSR, CSR * CSR, etc.
efficient row slicing
fast matrix vector products
Disadvantages of the CSR format
slow column slicing operations (consider CSC)
changes to the sparsity structure are expensive (consider LIL or DOK)
Compressed Sparse Row matrix
>>> import numpy as np
... from scipy.sparse import csr_matrix
... csr_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 0, 1, 2, 2, 2])
... col = np.array([0, 2, 2, 0, 1, 2])
... data = np.array([1, 2, 3, 4, 5, 6])
... csr_matrix((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])
>>> indptr = np.array([0, 2, 3, 6])
... indices = np.array([0, 2, 2, 0, 1, 2])
... data = np.array([1, 2, 3, 4, 5, 6])
... csr_matrix((data, indices, indptr), shape=(3, 3)).toarray() array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])
Duplicate entries are summed together:
>>> row = np.array([0, 1, 2, 0])
... col = np.array([0, 1, 1, 0])
... data = np.array([1, 2, 4, 8])
... csr_matrix((data, (row, col)), shape=(3, 3)).toarray() array([[9, 0, 0], [0, 2, 0], [0, 4, 0]])
As an example of how to construct a CSR matrix incrementally, the following snippet builds a term-document matrix from texts:
>>> docs = [["hello", "world", "hello"], ["goodbye", "cruel", "world"]]
... indptr = [0]
... indices = []
... data = []
... vocabulary = {}
... for d in docs:
... for term in d:
... index = vocabulary.setdefault(term, len(vocabulary))
... indices.append(index)
... data.append(1)
... indptr.append(len(indices)) ...
>>> csr_matrix((data, indices, indptr), dtype=int).toarray() array([[2, 1, 0, 0], [0, 1, 1, 1]])See :
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.sparse._coo.isspmatrix_cooscipy.sparse.csgraph._traversal.depth_first_orderscipy.sparse.csgraph._flow.maximum_flowscipy.sparse.csgraph._tools.reconstruct_pathscipy.sparse._base.spmatrix.nonzeroscipy.sparse.csgraph._traversal.breadth_first_orderscipy.sparse._compressed._cs_matrix.diagonalscipy.sparse._extract.triuscipy.sparse.csgraph._shortest_path.bellman_fordscipy.sparse._base.spmatrix.diagonalscipy.sparse._dia.isspmatrix_diascipy.sparse._coo.coo_matrix.tocsrscipy.sparse.csgraph._traversal.connected_componentsscipy.sparse._base.spmatrix.dotscipy.sparse._csr.csr_matrixscipy.sparse._csr.isspmatrix_csrscipy.sparse.csgraph._reordering.reverse_cuthill_mckeescipy.sparse._csc.csc_matrix.nonzeroscipy.sparse.csgraph._tools.csgraph_to_maskedscipy.sparse._dia.dia_matrix.diagonalscipy.sparse._extract.findscipy.sparse._dok.isspmatrix_dokscipy.sparse.csgraph._reordering.structural_rankscipy.sparse.csgraph._shortest_path.floyd_warshallscipy.sparse.csgraph._shortest_path.shortest_pathscipy.sparse.linalg._eigen._svds.svdsscipy.sparse._bsr.bsr_matrix.diagonalscipy.sparse.csgraph._matching.min_weight_full_bipartite_matchingscipy.sparse.linalg._norm.normscipy.sparse.csgraph._matching.maximum_bipartite_matchingscipy.sparse.csgraph._tools.csgraph_to_densescipy.sparse.csgraph._shortest_path.johnsonscipy.sparse._coo.coo_matrix.diagonalscipy.sparse._lil.isspmatrix_lilscipy.sparse._csc.isspmatrix_cscscipy.sparse.linalg._isolve.minres.minresscipy.sparse.linalg._dsolve.linsolve.spsolve_triangularscipy.sparse._extract.trilscipy.sparse._construct.kronscipy.sparse._bsr.isspmatrix_bsrscipy.sparse._base.isspmatrixscipy.sparse.csgraph._tools.construct_dist_matrixscipy.sparse.csgraph._shortest_path.dijkstranetworkx.utils.rcm.cuthill_mckee_orderingnetworkx.convert_matrix.from_scipy_sparse_matrixnetworkx.linalg.bethehessianmatrix.bethe_hessian_matrixnetworkx.utils.rcm.reverse_cuthill_mckee_orderingnetworkx.convert_matrix.to_scipy_sparse_matrixHover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them