Data type of the matrix
Shape of the matrix
Number of dimensions (this is always 2)
Number of stored values, including explicit zeros
Data array of the matrix
CSC format index array
CSC format index pointer array
Whether indices are sorted
This can be instantiated in several ways:
csc_matrix(D)
with a dense matrix or rank-2 ndarray D
csc_matrix(S)
with another sparse matrix S (equivalent to S.tocsc())
csc_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.
csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where
data
,row_ind
andcol_ind
satisfy the relationshipa[row_ind[k], col_ind[k]] = data[k]
.csc_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSC representation where the row indices for column i are stored in
indices[indptr[i]:indptr[i+1]]
and their corresponding values are stored indata[indptr[i]:indptr[i+1]]
. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Advantages of the CSC format
efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
efficient column slicing
fast matrix vector products (CSR, BSR may be faster)
Disadvantages of the CSC format
slow row slicing operations (consider CSR)
changes to the sparsity structure are expensive (consider LIL or DOK)
Compressed Sparse Column matrix
>>> import numpy as np
... from scipy.sparse import csc_matrix
... csc_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 2, 2, 0, 1, 2])
... col = np.array([0, 0, 1, 2, 2, 2])
... data = np.array([1, 2, 3, 4, 5, 6])
... csc_matrix((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 4], [0, 0, 5], [2, 3, 6]])
>>> indptr = np.array([0, 2, 3, 6])See :
... indices = np.array([0, 2, 2, 0, 1, 2])
... data = np.array([1, 2, 3, 4, 5, 6])
... csc_matrix((data, indices, indptr), shape=(3, 3)).toarray() array([[1, 0, 4], [0, 0, 5], [2, 3, 6]])
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.sparse.linalg._dsolve.linsolve.spsolve
scipy.sparse._matrix_io.load_npz
scipy.sparse._csr.isspmatrix_csr
scipy.sparse.linalg._isolve.iterative.gmres
scipy.sparse._csc.csc_matrix
scipy.sparse.linalg._dsolve.linsolve.spilu
scipy.sparse.linalg._onenormest.onenormest
scipy.sparse.linalg._matfuncs.inv
scipy.sparse.linalg._eigen._svds.svds
scipy.sparse.linalg._expm_multiply.expm_multiply
scipy.sparse.linalg._isolve.lsqr.lsqr
scipy.sparse.linalg._dsolve.linsolve.splu
scipy.sparse.linalg._isolve.tfqmr.tfqmr
scipy.sparse._coo.coo_matrix.tocsc
scipy.sparse._matrix_io.save_npz
scipy.sparse._csc.isspmatrix_csc
scipy.sparse.linalg._isolve.minres.minres
scipy.sparse.linalg._matfuncs.expm
scipy.sparse.linalg._isolve.lsmr.lsmr
scipy.sparse.linalg._isolve.iterative.qmr
scipy.sparse.linalg._isolve.lgmres.lgmres
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them