scipy 1.8.0 Pypi GitHub Homepage
Other Docs
AttributesNotesBackRef

Attributes

dtype : dtype

Data type of the matrix

shape : 2-tuple

Shape of the matrix

ndim : int

Number of dimensions (this is always 2)

nnz :

Number of stored values, including explicit zeros

data :

Data array of the matrix

indices :

CSC format index array

indptr :

CSC format index pointer array

has_sorted_indices :

Whether indices are sorted

This can be instantiated in several ways:

csc_matrix(D)

with a dense matrix or rank-2 ndarray D

csc_matrix(S)

with another sparse matrix S (equivalent to S.tocsc())

csc_matrix((M, N), [dtype])

to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.

csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)])

where data , row_ind and col_ind satisfy the relationship a[row_ind[k], col_ind[k]] = data[k] .

csc_matrix((data, indices, indptr), [shape=(M, N)])

is the standard CSC representation where the row indices for column i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]] . If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Advantages of the CSC format

  • efficient arithmetic operations CSC + CSC, CSC * CSC, etc.

  • efficient column slicing

  • fast matrix vector products (CSR, BSR may be faster)

Disadvantages of the CSC format

  • slow row slicing operations (consider CSR)

  • changes to the sparsity structure are expensive (consider LIL or DOK)

Compressed Sparse Column matrix

Examples

>>> import numpy as np
... from scipy.sparse import csc_matrix
... csc_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 2, 2, 0, 1, 2])
... col = np.array([0, 0, 1, 2, 2, 2])
... data = np.array([1, 2, 3, 4, 5, 6])
... csc_matrix((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 4], [0, 0, 5], [2, 3, 6]])
>>> indptr = np.array([0, 2, 3, 6])
... indices = np.array([0, 2, 2, 0, 1, 2])
... data = np.array([1, 2, 3, 4, 5, 6])
... csc_matrix((data, indices, indptr), shape=(3, 3)).toarray() array([[1, 0, 4], [0, 0, 5], [2, 3, 6]])
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

scipy.sparse.linalg._dsolve.linsolve.spsolve scipy.sparse._matrix_io.load_npz scipy.sparse._csr.isspmatrix_csr scipy.sparse.linalg._isolve.iterative.gmres scipy.sparse._csc.csc_matrix scipy.sparse.linalg._dsolve.linsolve.spilu scipy.sparse.linalg._onenormest.onenormest scipy.sparse.linalg._matfuncs.inv scipy.sparse.linalg._eigen._svds.svds scipy.sparse.linalg._expm_multiply.expm_multiply scipy.sparse.linalg._isolve.lsqr.lsqr scipy.sparse.linalg._dsolve.linsolve.splu scipy.sparse.linalg._isolve.tfqmr.tfqmr scipy.sparse._coo.coo_matrix.tocsc scipy.sparse._matrix_io.save_npz scipy.sparse._csc.isspmatrix_csc scipy.sparse.linalg._isolve.minres.minres scipy.sparse.linalg._matfuncs.expm scipy.sparse.linalg._isolve.lsmr.lsmr scipy.sparse.linalg._isolve.iterative.qmr scipy.sparse.linalg._isolve.lgmres.lgmres

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/sparse/_csc.py#16
type: <class 'type'>
Commit: