scipy 1.8.0 Pypi GitHub Homepage
Other Docs
NotesParametersReturnsBackRef
random(m, n, density=0.01, format='coo', dtype=None, random_state=None, data_rvs=None)

Notes

Only float types are supported for now.

Parameters

m, n : int

shape of the matrix

density : real, optional

density of the generated matrix: density equal to one means a full matrix, density of 0 means a matrix with no non-zero items.

format : str, optional

sparse matrix format.

dtype : dtype, optional

type of the returned matrix values.

random_state : {None, int, `numpy.random.Generator`,

numpy.random.RandomState }, optional

If seed is None (or :None:None:`np.random`), the numpy.random.RandomState singleton is used. If seed is an int, a new RandomState instance is used, seeded with seed . If seed is already a Generator or RandomState instance then that instance is used. This random state will be used for sampling the sparsity structure, but not necessarily for sampling the values of the structurally nonzero entries of the matrix.

data_rvs : callable, optional

Samples a requested number of random values. This function should take a single argument specifying the length of the ndarray that it will return. The structurally nonzero entries of the sparse random matrix will be taken from the array sampled by this function. By default, uniform [0, 1) random values will be sampled using the same random state as is used for sampling the sparsity structure.

Returns

res : sparse matrix

Generate a sparse matrix of the given shape and density with randomly distributed values.

Examples

>>> from scipy.sparse import random
... from scipy import stats
... from numpy.random import default_rng
... rng = default_rng()
... rvs = stats.poisson(25, loc=10).rvs
... S = random(3, 4, density=0.25, random_state=rng, data_rvs=rvs)
... S.A array([[ 36., 0., 33., 0.], # random [ 0., 0., 0., 0.], [ 0., 0., 36., 0.]])
>>> from scipy.sparse import random
... from scipy.stats import rv_continuous
... class CustomDistribution(rv_continuous):
...  def _rvs(self, size=None, random_state=None):
...  return random_state.standard_normal(size)
... X = CustomDistribution(seed=rng)
... Y = X() # get a frozen version of the distribution
... S = random(3, 4, density=0.25, random_state=rng, data_rvs=Y.rvs)
... S.A array([[ 0. , 0. , 0. , 0. ], # random [ 0.13569738, 1.9467163 , -0.81205367, 0. ], [ 0. , 0. , 0. , 0. ]])
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

scipy.sparse._construct.random scipy.sparse.csgraph._matching.min_weight_full_bipartite_matching

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/sparse/_construct.py#762
type: <class 'function'>
Commit: