scipy 1.8.0 Pypi GitHub Homepage
Other Docs
ParametersRaisesReturnsBackRef
eigvals_banded(a_band, lower=False, overwrite_a_band=False, select='a', select_range=None, check_finite=True)

Find eigenvalues w of a:

a v[:,i] = w[i] v[:,i]
v.H v    = identity

The matrix a is stored in a_band either in lower diagonal or upper diagonal ordered form:

a_band[u + i - j, j] == a[i,j] (if upper form; i <= j) a_band[ i - j, j] == a[i,j] (if lower form; i >= j)

where u is the number of bands above the diagonal.

Example of a_band (shape of a is (6,6), u=2):

upper form:
*   *   a02 a13 a24 a35
*   a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 *   *

Cells marked with * are not used.

Parameters

a_band : (u+1, M) array_like

The bands of the M by M matrix a.

lower : bool, optional

Is the matrix in the lower form. (Default is upper form)

overwrite_a_band : bool, optional

Discard data in a_band (may enhance performance)

select : {'a', 'v', 'i'}, optional

Which eigenvalues to calculate

====== ======================================== select calculated ====== ======================================== 'a' All eigenvalues 'v' Eigenvalues in the interval (min, max] 'i' Eigenvalues with indices min <= i <= max ====== ========================================

select_range : (min, max), optional

Range of selected eigenvalues

check_finite : bool, optional

Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Raises

LinAlgError

If eigenvalue computation does not converge.

Returns

w : (M,) ndarray

The eigenvalues, in ascending order, each repeated according to its multiplicity.

Solve real symmetric or complex Hermitian band matrix eigenvalue problem.

See Also

eig

eigenvalues and right eigenvectors for non-symmetric arrays

eig_banded

eigenvalues and right eigenvectors for symmetric/Hermitian band matrices

eigh

eigenvalues and right eigenvectors for symmetric/Hermitian arrays

eigvals

eigenvalues of general arrays

eigvalsh_tridiagonal

eigenvalues of symmetric/Hermitian tridiagonal matrices

Examples

>>> from scipy.linalg import eigvals_banded
... A = np.array([[1, 5, 2, 0], [5, 2, 5, 2], [2, 5, 3, 5], [0, 2, 5, 4]])
... Ab = np.array([[1, 2, 3, 4], [5, 5, 5, 0], [2, 2, 0, 0]])
... w = eigvals_banded(Ab, lower=True)
... w array([-4.26200532, -2.22987175, 3.95222349, 12.53965359])
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

scipy.linalg._decomp.eigvals scipy.linalg._decomp.eigvals_banded scipy.linalg._decomp.eigvalsh scipy.linalg._decomp.eig_banded

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/linalg/_decomp.py#1017
type: <class 'function'>
Commit: