scipy 1.8.0 Pypi GitHub Homepage
Other Docs
ParametersReturnsBackRef
cholesky_banded(ab, overwrite_ab=False, lower=False, check_finite=True)

The matrix a is stored in ab either in lower-diagonal or upper- diagonal ordered form:

ab[u + i - j, j] == a[i,j]        (if upper form; i <= j)
ab[    i - j, j] == a[i,j]        (if lower form; i >= j)

Example of ab (shape of a is (6,6), u=2):

upper form:
*   *   a02 a13 a24 a35
*   a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 *   *

Parameters

ab : (u + 1, M) array_like

Banded matrix

overwrite_ab : bool, optional

Discard data in ab (may enhance performance)

lower : bool, optional

Is the matrix in the lower form. (Default is upper form)

check_finite : bool, optional

Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

c : (u + 1, M) ndarray

Cholesky factorization of a, in the same banded format as ab

Cholesky decompose a banded Hermitian positive-definite matrix

See Also

cho_solve_banded

Solve a linear set equations, given the Cholesky factorization of a banded Hermitian.

Examples

>>> from scipy.linalg import cholesky_banded
... from numpy import allclose, zeros, diag
... Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
... A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
... A = A + A.conj().T + np.diag(Ab[2, :])
... c = cholesky_banded(Ab)
... C = np.diag(c[0, 2:], k=2) + np.diag(c[1, 1:], k=1) + np.diag(c[2, :])
... np.allclose(C.conj().T @ C - A, np.zeros((5, 5))) True
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

scipy.linalg._decomp_cholesky.cholesky_banded scipy.linalg._decomp_cholesky.cho_solve_banded scipy.interpolate._bspl._norm_eq_lsq

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/linalg/_decomp_cholesky.py#215
type: <class 'function'>
Commit: