scipy 1.8.0 Pypi GitHub Homepage
Other Docs
ParametersReturnsBackRef
rsf2csf(T, Z, check_finite=True)

Convert a quasi-diagonal real-valued Schur form to the upper-triangular complex-valued Schur form.

Parameters

T : (M, M) array_like

Real Schur form of the original array

Z : (M, M) array_like

Schur transformation matrix

check_finite : bool, optional

Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns

T : (M, M) ndarray

Complex Schur form of the original array

Z : (M, M) ndarray

Schur transformation matrix corresponding to the complex form

Convert real Schur form to complex Schur form.

See Also

schur

Schur decomposition of an array

Examples

>>> from scipy.linalg import schur, rsf2csf
... A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]])
... T, Z = schur(A)
... T array([[ 2.65896708, 1.42440458, -1.92933439], [ 0. , -0.32948354, -0.49063704], [ 0. , 1.31178921, -0.32948354]])
>>> Z
array([[0.72711591, -0.60156188, 0.33079564],
       [0.52839428, 0.79801892, 0.28976765],
       [0.43829436, 0.03590414, -0.89811411]])
>>> T2 , Z2 = rsf2csf(T, Z)
... T2 array([[2.65896708+0.j, -1.64592781+0.743164187j, -1.21516887+1.00660462j], [0.+0.j , -0.32948354+8.02254558e-01j, -0.82115218-2.77555756e-17j], [0.+0.j , 0.+0.j, -0.32948354-0.802254558j]])
>>> Z2
array([[0.72711591+0.j,  0.28220393-0.31385693j,  0.51319638-0.17258824j],
       [0.52839428+0.j,  0.24720268+0.41635578j, -0.68079517-0.15118243j],
       [0.43829436+0.j, -0.76618703+0.01873251j, -0.03063006+0.46857912j]])
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

scipy.linalg._decomp_schur.schur scipy.linalg._decomp_schur.rsf2csf

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/linalg/_decomp_schur.py#210
type: <class 'function'>
Commit: