scipy 1.8.0 Pypi GitHub Homepage
Other Docs
ParametersReturnsBackRef
convolve2d(in1, in2, mode='full', boundary='fill', fillvalue=0)

Convolve :None:None:`in1` and in2 with output size determined by :None:None:`mode`, and boundary conditions determined by boundary and :None:None:`fillvalue`.

Parameters

in1 : array_like

First input.

in2 : array_like

Second input. Should have the same number of dimensions as :None:None:`in1`.

mode : str {'full', 'valid', 'same'}, optional

A string indicating the size of the output:

full

The output is the full discrete linear convolution of the inputs. (Default)

valid

The output consists only of those elements that do not rely on the zero-padding. In 'valid' mode, either :None:None:`in1` or in2 must be at least as large as the other in every dimension.

same

The output is the same size as :None:None:`in1`, centered with respect to the 'full' output.

boundary : str {'fill', 'wrap', 'symm'}, optional

A flag indicating how to handle boundaries:

fill

pad input arrays with fillvalue. (default)

wrap

circular boundary conditions.

symm

symmetrical boundary conditions.

fillvalue : scalar, optional

Value to fill pad input arrays with. Default is 0.

Returns

out : ndarray

A 2-dimensional array containing a subset of the discrete linear convolution of :None:None:`in1` with in2 .

Convolve two 2-dimensional arrays.

Examples

Compute the gradient of an image by 2D convolution with a complex Scharr operator. (Horizontal operator is real, vertical is imaginary.) Use symmetric boundary condition to avoid creating edges at the image boundaries.

>>> from scipy import signal
... from scipy import misc
... ascent = misc.ascent()
... scharr = np.array([[ -3-3j, 0-10j, +3 -3j],
...  [-10+0j, 0+ 0j, +10 +0j],
...  [ -3+3j, 0+10j, +3 +3j]]) # Gx + j*Gy
... grad = signal.convolve2d(ascent, scharr, boundary='symm', mode='same')
>>> import matplotlib.pyplot as plt
... fig, (ax_orig, ax_mag, ax_ang) = plt.subplots(3, 1, figsize=(6, 15))
... ax_orig.imshow(ascent, cmap='gray')
... ax_orig.set_title('Original')
... ax_orig.set_axis_off()
... ax_mag.imshow(np.absolute(grad), cmap='gray')
... ax_mag.set_title('Gradient magnitude')
... ax_mag.set_axis_off()
... ax_ang.imshow(np.angle(grad), cmap='hsv') # hsv is cyclic, like angles
... ax_ang.set_title('Gradient orientation')
... ax_ang.set_axis_off()
... fig.show()
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

skimage.restoration.deconvolution.unsupervised_wiener skimage.restoration.deconvolution.wiener scipy.signal._signaltools.fftconvolve skimage.restoration.deconvolution.richardson_lucy scipy.signal._signaltools.convolve2d

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/signal/_signaltools.py#1618
type: <class 'function'>
Commit: