dask 2021.10.0

NotesParametersReturnsBackRef
isinf(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

Some inconsistencies with the Dask version may exist.

Test element-wise for positive or negative infinity.

Returns a boolean array of the same shape as x, True where x == +/-inf , otherwise False.

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).

Errors result if the second argument is supplied when the first argument is a scalar, or if the first and second arguments have different shapes.

Parameters

x : array_like

Input values

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

This condition is broadcast over the input. At locations where the condition is True, the :None:None:`out` array will be set to the ufunc result. Elsewhere, the :None:None:`out` array will retain its original value. Note that if an uninitialized :None:None:`out` array is created via the default out=None , locations within it where the condition is False will remain uninitialized.

**kwargs :

For other keyword-only arguments, see the ufunc docs <ufuncs.kwargs> .

Returns

y : bool (scalar) or boolean ndarray

True where x is positive or negative infinity, false otherwise. This is a scalar if x is a scalar.

This docstring was copied from numpy.isinf.

See Also

isfinite
isnan
isneginf
isposinf

Examples

This example is valid syntax, but we were not able to check execution
>>> np.isinf(np.inf)  # doctest: +SKIP
True
This example is valid syntax, but we were not able to check execution
>>> np.isinf(np.nan)  # doctest: +SKIP
False
This example is valid syntax, but we were not able to check execution
>>> np.isinf(np.NINF)  # doctest: +SKIP
True
This example is valid syntax, but we were not able to check execution
>>> np.isinf([np.inf, -np.inf, 1.0, np.nan])  # doctest: +SKIP
array([ True,  True, False, False])
This example is valid syntax, but we were not able to check execution
>>> x = np.array([-np.inf, 0., np.inf])  # doctest: +SKIP
... y = np.array([2, 2, 2]) # doctest: +SKIP
... np.isinf(x, y) # doctest: +SKIP array([1, 0, 1])
This example is valid syntax, but we were not able to check execution
>>> y  # doctest: +SKIP
array([1, 0, 1])
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

dask.array.ufunc.isfinite dask.array.ufunc.isnan

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


File: /dask/array/ufunc.py#None
type: <class 'dask.array.ufunc.ufunc'>
Commit: