outer(a, b, out=None)
Given two vectors, a = [a0, a1, ..., aM]
and b = [b0, b1, ..., bN]
, the outer product is:
[[a0*b0 a0*b1 ... a0*bN ] [a1*b0 . [ ... . [aM*b0 aM*bN ]]
First input vector. Input is flattened if not already 1-dimensional.
Second input vector. Input is flattened if not already 1-dimensional.
A location where the result is stored
out[i, j] = a[i] * b[j]
Compute the outer product of two vectors.
einsum
einsum('i,j->ij', a.ravel(), b.ravel())
is the equivalent.
tensordot
np.tensordot(a.ravel(), b.ravel(), axes=((), ()))
is the equivalent.
ufunc.outer
A generalization to dimensions other than 1D and other operations. np.multiply.outer(a.ravel(), b.ravel())
is the equivalent.
Make a (very coarse) grid for computing a Mandelbrot set:
>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
... rl array([[-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.]])
>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
... im array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j], [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j], [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j], [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
>>> grid = rl + im
... grid array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j], [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j], [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j], [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j], [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])
An example using a "vector" of letters:
>>> x = np.array(['a', 'b', 'c'], dtype=object)See :
... np.outer(x, [1, 2, 3]) array([['a', 'aa', 'aaa'], ['b', 'bb', 'bbb'], ['c', 'cc', 'ccc']], dtype=object)
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.linalg._decomp_svd.svdvals
numpy.kron
dask.array.einsumfuncs.einsum
scipy.linalg._decomp_update.qr_update
dask.array.ufunc.ufunc.outer
scipy.signal._signaltools.fftconvolve
numpy.cross
scipy.spatial._geometric_slerp.geometric_slerp
numpy.core._multiarray_umath.c_einsum
dask.array.routines.outer
numpy.einsum
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them