outer(a, b, out=None)
                       Given two vectors,         a = [a0, a1, ..., aM]
 and         b = [b0, b1, ..., bN]
, the outer product  is:    
[[a0*b0 a0*b1 ... a0*bN ] [a1*b0 . [ ... . [aM*b0 aM*bN ]]
First input vector. Input is flattened if not already 1-dimensional.
Second input vector. Input is flattened if not already 1-dimensional.
A location where the result is stored
        out[i, j] = a[i] * b[j]
Compute the outer product of two vectors.
einsum
        einsum('i,j->ij', a.ravel(), b.ravel())
 is the equivalent.
tensordot
        np.tensordot(a.ravel(), b.ravel(), axes=((), ()))
 is the equivalent.
ufunc.outer
A generalization to dimensions other than 1D and other operations.         np.multiply.outer(a.ravel(), b.ravel())
 is the equivalent.
Make a (very coarse) grid for computing a Mandelbrot set:
>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
... rl array([[-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.]])
>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
... im array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j], [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j], [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j], [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
>>> grid = rl + im
... grid array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j], [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j], [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j], [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j], [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])
An example using a "vector" of letters:
>>> x = np.array(['a', 'b', 'c'], dtype=object)See :
... np.outer(x, [1, 2, 3]) array([['a', 'aa', 'aaa'], ['b', 'bb', 'bbb'], ['c', 'cc', 'ccc']], dtype=object)
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.linalg._decomp_svd.svdvals
        numpy.kron
        dask.array.einsumfuncs.einsum
        scipy.linalg._decomp_update.qr_update
        dask.array.ufunc.ufunc.outer
        scipy.signal._signaltools.fftconvolve
        numpy.cross
        scipy.spatial._geometric_slerp.geometric_slerp
        numpy.core._multiarray_umath.c_einsum
        dask.array.routines.outer
        numpy.einsum
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them