numpy 1.22.4 Pypi GitHub Homepage
Other Docs
NotesParametersReturnsBackRef
bartlett(M)

The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often used in signal processing for tapering a signal, without generating too much ripple in the frequency domain.

Notes

The Bartlett window is defined as

$$w(n) = \frac{2}{M-1} \left(\frac{M-1}{2} - \left|n - \frac{M-1}{2}\right| \right)$$

Most references to the Bartlett window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. Note that convolution with this window produces linear interpolation. It is also known as an apodization (which means"removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. The fourier transform of the Bartlett is the product of two sinc functions. Note the excellent discussion in Kanasewich.

Parameters

M : int

Number of points in the output window. If zero or less, an empty array is returned.

Returns

out : array

The triangular window, with the maximum value normalized to one (the value one appears only if the number of samples is odd), with the first and last samples equal to zero.

Return the Bartlett window.

See Also

blackman
hamming
hanning
kaiser

Examples

>>> import matplotlib.pyplot as plt
... np.bartlett(12) array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, # may vary 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636, 0.18181818, 0. ])

Plot the window and its frequency response (requires SciPy and matplotlib):

>>> from numpy.fft import fft, fftshift
... window = np.bartlett(51)
... plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Bartlett window")
Text(0.5, 1.0, 'Bartlett window')
>>> plt.ylabel("Amplitude")
Text(0, 0.5, 'Amplitude')
>>> plt.xlabel("Sample")
Text(0.5, 0, 'Sample')
>>> plt.show()
>>> plt.figure()
<Figure size 640x480 with 0 Axes>
>>> A = fft(window, 2048) / 25.5
... mag = np.abs(fftshift(A))
... freq = np.linspace(-0.5, 0.5, len(A))
... with np.errstate(divide='ignore', invalid='ignore'):
...  response = 20 * np.log10(mag) ...
>>> response = np.clip(response, -100, 100)
... plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Bartlett window")
Text(0.5, 1.0, 'Frequency response of Bartlett window')
>>> plt.ylabel("Magnitude [dB]")
Text(0, 0.5, 'Magnitude [dB]')
>>> plt.xlabel("Normalized frequency [cycles per sample]")
Text(0.5, 0, 'Normalized frequency [cycles per sample]')
>>> _ = plt.axis('tight')
... plt.show()
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

matplotlib.axes._axes.Axes.cohere matplotlib.pyplot.psd numpy.kaiser matplotlib.pyplot.angle_spectrum matplotlib.axes._axes.Axes.magnitude_spectrum matplotlib.pyplot.cohere numpy.hanning matplotlib.mlab.cohere matplotlib.mlab.specgram numpy.blackman matplotlib.pyplot.magnitude_spectrum matplotlib.axes._axes.Axes.psd matplotlib.pyplot.phase_spectrum matplotlib.pyplot.csd matplotlib.axes._axes.Axes.csd numpy.hamming matplotlib.mlab.csd matplotlib.axes._axes.Axes.angle_spectrum matplotlib.axes._axes.Axes.phase_spectrum matplotlib.pyplot.specgram matplotlib.axes._axes.Axes.specgram matplotlib.mlab.psd

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /numpy/lib/function_base.py#2942
type: <class 'function'>
Commit: