arange([start,] stop[, step,], dtype=None, *, like=None)
Values are generated within the half-open interval [start, stop)
(in other words, the interval including :None:None:`start`
but excluding :None:None:`stop`
). For integer arguments the function is equivalent to the Python built-in :None:None:`range`
function, but returns an ndarray rather than a list.
When using a non-integer step, such as 0.1, it is often better to use numpy.linspace
. See the warnings section below for more information.
Start of interval. The interval includes this value. The default start value is 0.
End of interval. The interval does not include this value, except in some cases where :None:None:`step`
is not an integer and floating point round-off affects the length of :None:None:`out`
.
Spacing between values. For any output :None:None:`out`
, this is the distance between two adjacent values, out[i+1] - out[i]
. The default step size is 1. If :None:None:`step`
is specified as a position argument, :None:None:`start`
must also be given.
The type of the output array. If dtype
is not given, infer the data type from the other input arguments.
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like
supports the __array_function__
protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.
Array of evenly spaced values.
For floating point arguments, the length of the result is ceil((stop - start)/step)
. Because of floating point overflow, this rule may result in the last element of :None:None:`out`
being greater than :None:None:`stop`
.
Return evenly spaced values within a given interval.
numpy.linspace
Evenly spaced numbers with careful handling of endpoints.
numpy.mgrid
Grid-shaped arrays of evenly spaced numbers in N-dimensions.
numpy.ogrid
Arrays of evenly spaced numbers in N-dimensions.
>>> np.arange(3) array([0, 1, 2])
>>> np.arange(3.0) array([ 0., 1., 2.])
>>> np.arange(3,7) array([3, 4, 5, 6])
>>> np.arange(3,7,2) array([3, 5])See :
The following pages refer to to this document either explicitly or contain code examples using this.
dask.array.ufunc.fmod
dask.array.core.asarray
dask.array.chunk.coarsen
dask.array.ufunc.logical_xor
dask.array.ma.masked_invalid
dask.array.routines.bincount
dask.array.routines.insert
dask.array.ufunc.radians
dask.array.slicing.setitem
dask.array.creation.diag
dask.array.routines.where
dask.array.ufunc.copysign
dask.array.routines.atleast_1d
dask.array.ufunc.power
dask.array.ma.masked_values
dask.array.core.asanyarray
dask.array.routines.atleast_2d
dask.array.routines.transpose
dask.array.routines.roll
dask.array.ma.masked_where
dask.array.ufunc.ldexp
dask.array.ufunc.true_divide
dask.array.ufunc.logical_or
dask.array.routines.apply_over_axes
dask.array.random.RandomState.noncentral_chisquare
dask.array.ufunc.logical_not
dask.array.routines.select
dask.array.routines.dot
dask.array.ufunc.degrees
dask.array.random.RandomState.weibull
dask.array.overlap.map_overlap
dask.array.ufunc.equal
dask.array.overlap.overlap
dask.array.random.RandomState.laplace
dask.array.routines.argwhere
dask.array.core.map_blocks
dask.array.tiledb_io.from_tiledb
dask.array.ma.filled
dask.array.random.RandomState.permutation
dask.array.core.Array.map_overlap
dask.array.routines.average
dask.array.routines.triu
dask.array.random.RandomState.zipf
dask.array.routines.result_type
dask.array.linalg.norm
dask.array.ufunc.remainder
dask.array.routines.diff
dask.array.routines.atleast_3d
dask.array.creation.diagonal
dask.array.reductions.trace
dask.array.core.from_func
dask.array.routines.ravel
dask.array.routines.triu_indices
dask.array.ma.masked_array
dask.array.ma.masked_equal
dask.array.overlap.sliding_window_view
dask.array.creation.pad
dask.array.routines.gradient
dask.array.routines.flatnonzero
dask.array.routines.extract
dask.array.routines.histogram
dask.array.reductions.min
dask.array.reductions.max
dask.array.ufunc.multiply
dask.array.ufunc.add
dask.array.ufunc.subtract
dask.array.routines.tril_indices
dask.array.routines.tril
dask.array.ufunc.logical_and
dask.array.einsumfuncs.einsum
dask.array.ma.set_fill_value
dask.array.ufunc.divmod
scipy.stats._stats_py.scoreatpercentile
scipy.special._spherical_bessel.spherical_kn
scipy.signal._signaltools.order_filter
scipy.fft._basic.hfft
scipy.signal._arraytools.even_ext
scipy.optimize._optimize.rosen
scipy.interpolate._polyint.approximate_taylor_polynomial
scipy.linalg._basic.solve_circulant
scipy.fft._basic.fft
scipy.interpolate._interpolate.interp2d
scipy.sparse.csgraph._laplacian.laplacian
scipy.signal.windows._windows.dpss
scipy.interpolate._interpolate.interp1d
scipy.interpolate._bsplines.make_interp_spline
scipy.optimize._optimize.rosen_hess
scipy.sparse.linalg._eigen.lobpcg.lobpcg.lobpcg
scipy.signal._max_len_seq.max_len_seq
scipy.signal._upfirdn.upfirdn
scipy.special._orthogonal.jacobi
scipy.special._orthogonal.genlaguerre
scipy.linalg._misc.norm
scipy.fft._basic.ifft
scipy.signal._spectral_py.csd
scipy.interpolate._interpolate.lagrange
scipy.special._spfun_stats.multigammaln
scipy.signal._signaltools.correlate
scipy.linalg._decomp_qz.qz
scipy.signal._spectral_py.istft
scipy.signal._wavelets.cwt
scipy.misc._common.electrocardiogram
scipy.signal._waveforms.chirp
scipy.signal._signaltools.sosfilt_zi
scipy.special._orthogonal.chebyu
scipy.integrate._quadrature.simpson
scipy.special._basic.bernoulli
scipy.special._logsumexp.logsumexp
scipy.interpolate._fitpack2.LSQUnivariateSpline
scipy.special._orthogonal.chebyt
scipy.integrate._quadrature.romb
scipy.sparse.linalg._norm.norm
scipy.signal._waveforms.unit_impulse
scipy.optimize._qap.quadratic_assignment
scipy.special._orthogonal.laguerre
scipy.signal._spectral_py.welch
scipy.signal._spectral_py.spectrogram
scipy.signal._arraytools.odd_ext
scipy.optimize._optimize.rosen_hess_prod
scipy.sparse.csgraph._flow.maximum_flow
scipy.signal._peak_finding.find_peaks_cwt
scipy.signal._spectral_py.periodogram
scipy.linalg._special_matrices.fiedler_companion
scipy.optimize._zeros_py.newton
scipy.optimize._optimize.rosen_der
scipy.signal._signaltools.fftconvolve
scipy.special._spherical_bessel.spherical_yn
scipy.signal._spectral_py.coherence
scipy.signal._spectral_py.stft
scipy.fft._basic.fftn
scipy.special._spherical_bessel.spherical_jn
scipy.special._spherical_bessel.spherical_in
scipy.signal._signaltools.hilbert
scipy.signal._arraytools.const_ext
scipy.interpolate._cubic.CubicSpline
pandas.core.indexing._IndexSlice
pandas.core.generic.NDFrame.mask
pandas.core.tools.timedeltas.to_timedelta
pandas.core.generic.NDFrame.resample
pandas.core.series.Series.resample
pandas.core.generic.NDFrame.where
pandas.core.series.Series.drop
pandas.core.frame.DataFrame.unstack
pandas.core.indexes.accessors.TimedeltaProperties.to_pytimedelta
pandas.core.frame.DataFrame.drop
pandas.core.groupby.grouper.Grouper
pandas.core.frame.DataFrame.resample
pandas.core.reshape.reshape._Unstacker
pandas.core.arrays.timedeltas.TimedeltaArray.total_seconds
skimage.measure.block.block_reduce
skimage.restoration.j_invariant.calibrate_denoiser
skimage.viewer.canvastools.painttool.CenteredWindow
skimage.transform.hough_transform.hough_circle
skimage.graph.mcp.route_through_array
skimage.transform._warps.downscale_local_mean
skimage.util.shape.view_as_blocks
skimage.util._montage.montage
skimage.util.shape.view_as_windows
skimage.draw.draw_nd._round_safe
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them