arange([start,] stop[, step,], dtype=None, *, like=None)
Values are generated within the half-open interval [start, stop)
(in other words, the interval including :None:None:`start` but excluding :None:None:`stop`). For integer arguments the function is equivalent to the Python built-in :None:None:`range` function, but returns an ndarray rather than a list.
When using a non-integer step, such as 0.1, it is often better to use numpy.linspace
. See the warnings section below for more information.
Start of interval. The interval includes this value. The default start value is 0.
End of interval. The interval does not include this value, except in some cases where :None:None:`step` is not an integer and floating point round-off affects the length of :None:None:`out`.
Spacing between values. For any output :None:None:`out`, this is the distance between two adjacent values, out[i+1] - out[i]
. The default step size is 1. If :None:None:`step` is specified as a position argument, :None:None:`start` must also be given.
The type of the output array. If dtype
is not given, infer the data type from the other input arguments.
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like
supports the __array_function__
protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.
Array of evenly spaced values.
For floating point arguments, the length of the result is ceil((stop - start)/step)
. Because of floating point overflow, this rule may result in the last element of :None:None:`out` being greater than :None:None:`stop`.
Return evenly spaced values within a given interval.
numpy.linspace
Evenly spaced numbers with careful handling of endpoints.
numpy.mgrid
Grid-shaped arrays of evenly spaced numbers in N-dimensions.
numpy.ogrid
Arrays of evenly spaced numbers in N-dimensions.
>>> np.arange(3) array([0, 1, 2])
>>> np.arange(3.0) array([ 0., 1., 2.])
>>> np.arange(3,7) array([3, 4, 5, 6])
>>> np.arange(3,7,2) array([3, 5])See :
The following pages refer to to this document either explicitly or contain code examples using this.
dask.array.ufunc.fmoddask.array.core.asarraydask.array.chunk.coarsendask.array.ufunc.logical_xordask.array.ma.masked_invaliddask.array.routines.bincountdask.array.routines.insertdask.array.ufunc.radiansdask.array.slicing.setitemdask.array.creation.diagdask.array.routines.wheredask.array.ufunc.copysigndask.array.routines.atleast_1ddask.array.ufunc.powerdask.array.ma.masked_valuesdask.array.core.asanyarraydask.array.routines.atleast_2ddask.array.routines.transposedask.array.routines.rolldask.array.ma.masked_wheredask.array.ufunc.ldexpdask.array.ufunc.true_dividedask.array.ufunc.logical_ordask.array.routines.apply_over_axesdask.array.random.RandomState.noncentral_chisquaredask.array.ufunc.logical_notdask.array.routines.selectdask.array.routines.dotdask.array.ufunc.degreesdask.array.random.RandomState.weibulldask.array.overlap.map_overlapdask.array.ufunc.equaldask.array.overlap.overlapdask.array.random.RandomState.laplacedask.array.routines.argwheredask.array.core.map_blocksdask.array.tiledb_io.from_tiledbdask.array.ma.filleddask.array.random.RandomState.permutationdask.array.core.Array.map_overlapdask.array.routines.averagedask.array.routines.triudask.array.random.RandomState.zipfdask.array.routines.result_typedask.array.linalg.normdask.array.ufunc.remainderdask.array.routines.diffdask.array.routines.atleast_3ddask.array.creation.diagonaldask.array.reductions.tracedask.array.core.from_funcdask.array.routines.raveldask.array.routines.triu_indicesdask.array.ma.masked_arraydask.array.ma.masked_equaldask.array.overlap.sliding_window_viewdask.array.creation.paddask.array.routines.gradientdask.array.routines.flatnonzerodask.array.routines.extractdask.array.routines.histogramdask.array.reductions.mindask.array.reductions.maxdask.array.ufunc.multiplydask.array.ufunc.adddask.array.ufunc.subtractdask.array.routines.tril_indicesdask.array.routines.trildask.array.ufunc.logical_anddask.array.einsumfuncs.einsumdask.array.ma.set_fill_valuedask.array.ufunc.divmodscipy.stats._stats_py.scoreatpercentilescipy.special._spherical_bessel.spherical_knscipy.signal._signaltools.order_filterscipy.fft._basic.hfftscipy.signal._arraytools.even_extscipy.optimize._optimize.rosenscipy.interpolate._polyint.approximate_taylor_polynomialscipy.linalg._basic.solve_circulantscipy.fft._basic.fftscipy.interpolate._interpolate.interp2dscipy.sparse.csgraph._laplacian.laplacianscipy.signal.windows._windows.dpssscipy.interpolate._interpolate.interp1dscipy.interpolate._bsplines.make_interp_splinescipy.optimize._optimize.rosen_hessscipy.sparse.linalg._eigen.lobpcg.lobpcg.lobpcgscipy.signal._max_len_seq.max_len_seqscipy.signal._upfirdn.upfirdnscipy.special._orthogonal.jacobiscipy.special._orthogonal.genlaguerrescipy.linalg._misc.normscipy.fft._basic.ifftscipy.signal._spectral_py.csdscipy.interpolate._interpolate.lagrangescipy.special._spfun_stats.multigammalnscipy.signal._signaltools.correlatescipy.linalg._decomp_qz.qzscipy.signal._spectral_py.istftscipy.signal._wavelets.cwtscipy.misc._common.electrocardiogramscipy.signal._waveforms.chirpscipy.signal._signaltools.sosfilt_ziscipy.special._orthogonal.chebyuscipy.integrate._quadrature.simpsonscipy.special._basic.bernoulliscipy.special._logsumexp.logsumexpscipy.interpolate._fitpack2.LSQUnivariateSplinescipy.special._orthogonal.chebytscipy.integrate._quadrature.rombscipy.sparse.linalg._norm.normscipy.signal._waveforms.unit_impulsescipy.optimize._qap.quadratic_assignmentscipy.special._orthogonal.laguerrescipy.signal._spectral_py.welchscipy.signal._spectral_py.spectrogramscipy.signal._arraytools.odd_extscipy.optimize._optimize.rosen_hess_prodscipy.sparse.csgraph._flow.maximum_flowscipy.signal._peak_finding.find_peaks_cwtscipy.signal._spectral_py.periodogramscipy.linalg._special_matrices.fiedler_companionscipy.optimize._zeros_py.newtonscipy.optimize._optimize.rosen_derscipy.signal._signaltools.fftconvolvescipy.special._spherical_bessel.spherical_ynscipy.signal._spectral_py.coherencescipy.signal._spectral_py.stftscipy.fft._basic.fftnscipy.special._spherical_bessel.spherical_jnscipy.special._spherical_bessel.spherical_inscipy.signal._signaltools.hilbertscipy.signal._arraytools.const_extscipy.interpolate._cubic.CubicSplinepandas.core.indexing._IndexSlicepandas.core.generic.NDFrame.maskpandas.core.tools.timedeltas.to_timedeltapandas.core.generic.NDFrame.resamplepandas.core.series.Series.resamplepandas.core.generic.NDFrame.wherepandas.core.series.Series.droppandas.core.frame.DataFrame.unstackpandas.core.indexes.accessors.TimedeltaProperties.to_pytimedeltapandas.core.frame.DataFrame.droppandas.core.groupby.grouper.Grouperpandas.core.frame.DataFrame.resamplepandas.core.reshape.reshape._Unstackerpandas.core.arrays.timedeltas.TimedeltaArray.total_secondsskimage.measure.block.block_reduceskimage.restoration.j_invariant.calibrate_denoiserskimage.viewer.canvastools.painttool.CenteredWindowskimage.transform.hough_transform.hough_circleskimage.graph.mcp.route_through_arrayskimage.transform._warps.downscale_local_meanskimage.util.shape.view_as_blocksskimage.util._montage.montageskimage.util.shape.view_as_windowsskimage.draw.draw_nd._round_safeHover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them