numpy 1.22.4 Pypi GitHub Homepage
Other Docs
ParametersReturnsBackRef
zeros(shape, dtype=float, order='C', *, like=None)

Parameters

shape : int or tuple of ints

Shape of the new array, e.g., (2, 3) or 2 .

dtype : data-type, optional

The desired data-type for the array, e.g., numpy.int8 . Default is numpy.float64 .

order : {'C', 'F'}, optional, default: 'C'

Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.

like : array_like

Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like supports the __array_function__ protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.

versionadded

Returns

out : ndarray

Array of zeros with the given shape, dtype, and order.

Return a new array of given shape and type, filled with zeros.

See Also

empty

Return a new uninitialized array.

full

Return a new array of given shape filled with value.

ones

Return a new array setting values to one.

zeros_like

Return an array of zeros with shape and type of input.

Examples

>>> np.zeros(5)
array([ 0.,  0.,  0.,  0.,  0.])
>>> np.zeros((5,), dtype=int)
array([0, 0, 0, 0, 0])
>>> np.zeros((2, 1))
array([[ 0.],
       [ 0.]])
>>> s = (2,2)
... np.zeros(s) array([[ 0., 0.], [ 0., 0.]])
>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],
      dtype=[('x', '<i4'), ('y', '<i4')])
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

skimage

59 Elements
skimage.feature._canny.canny
skimage.transform.hough_transform.hough_ellipse
skimage.morphology.extrema.local_minima
skimage.draw.draw.circle_perimeter_aa
skimage.feature.corner.hessian_matrix
skimage.measure._moments.moments_central
skimage.draw.draw.line_aa
skimage.feature.corner.shape_index
skimage.measure._moments.moments_normalized
skimage.morphology._skeletonize.medial_axis
skimage.feature.corner_cy._corner_orientations
skimage.feature.template.match_template
skimage.feature.brief.BRIEF
skimage.filters._gaussian.gaussian
skimage.feature.corner.corner_moravec
skimage.feature.corner_cy._corner_moravec
skimage.draw.draw.bezier_curve
skimage.restoration.non_local_means.denoise_nl_means
skimage.draw.draw.ellipse
skimage.feature.corner.corner_harris
skimage.morphology.extrema.local_maxima
skimage.draw.draw.rectangle_perimeter
skimage.draw.draw.polygon_perimeter
skimage.feature.corner.corner_orientations
skimage.transform._hough_transform._hough_line
skimage.transform.hough_transform.hough_circle
skimage.morphology._util._set_border_values
skimage.feature.corner.structure_tensor_eigvals
skimage.feature.corner.corner_foerstner
skimage.segmentation.random_walker_segmentation.random_walker
skimage.transform._hough_transform._hough_ellipse
skimage.morphology._skeletonize.thin
skimage.feature.corner.hessian_matrix_eigvals
skimage.measure._moments.centroid
skimage.feature.corner.corner_fast
skimage.feature.orb.ORB
skimage.measure._find_contours.find_contours
skimage.util._regular_grid.regular_grid
skimage.morphology._flood_fill.flood_fill
skimage.measure._moments.moments
skimage.morphology._util._fast_pad
skimage.transform.hough_transform.hough_line
skimage.feature.corner.structure_tensor
skimage.draw.draw.disk
skimage.feature.haar.draw_haar_like_feature
skimage.draw.draw.set_color
skimage.transform.hough_transform.hough_circle_peaks
skimage.restoration.j_invariant._generate_grid_slice
skimage.draw.draw.ellipse_perimeter
skimage.feature.corner.corner_subpix
skimage.morphology._flood_fill.flood
skimage.draw.draw.polygon
skimage.measure._moments.moments_hu
skimage.transform.hough_transform.hough_line_peaks
skimage.draw.draw.rectangle
skimage.draw.draw_nd.line_nd
skimage.draw.draw.line
skimage.segmentation.active_contour_model.active_contour
skimage.feature.corner.corner_shi_tomasi

dask

11 Elements
dask.array.ufunc.cos
dask.array.reductions.std
dask.array.ufunc.radians
dask.array.ufunc.tan
dask.array.reductions.mean
dask.array.numpy_compat.moveaxis
dask.array.ufunc.sinh
dask.array.ufunc.degrees
dask.array.reductions.var
dask.array.ufunc.tanh
dask.array.einsumfuncs.einsum

scipy

21 Elements
scipy.optimize._basinhopping.basinhopping
scipy.linalg._expm_frechet.expm_frechet
scipy.linalg._decomp_cholesky.cholesky_banded
scipy.linalg._decomp_cholesky.cho_factor
scipy.fft._basic.irfftn
scipy.fft._basic.ifft
scipy.linalg._decomp.eigh
scipy.linalg._decomp_qr.qr_multiply
scipy.linalg._decomp.eig_banded
scipy.fft._basic.ifftn
scipy.linalg._decomp_cholesky.cho_solve_banded
scipy.linalg._matfuncs.expm
scipy.linalg._decomp_cholesky.cho_solve
scipy.linalg._decomp_lu.lu_solve
scipy.spatial._qhull.HalfspaceIntersection
scipy.linalg._decomp_lu.lu_factor
scipy.linalg._decomp_svd.svd
scipy.linalg._decomp_lu.lu
scipy.special._basic.diric
scipy.integrate._bvp.solve_bvp
scipy.linalg._special_matrices.block_diag

numpy

numpy.zeros_like
numpy.ndarray
numpy.array
numpy.full
numpy.empty
numpy.ones

pandas

pandas.core.series.Series.fillna
pandas.core.frame.DataFrame.fillna
pandas.core.generic.NDFrame.fillna

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : None#None
type: <class 'builtin_function_or_method'>
Commit: