numpy 1.22.4 Pypi GitHub Homepage
Other Docs
NotesParametersReturnsBackRef
meshgrid(*xi, copy=True, sparse=False, indexing='xy')

Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,..., xn.

versionchanged

1-D and 0-D cases are allowed.

Notes

This function supports both indexing conventions through the indexing keyword argument. Giving the string 'ij' returns a meshgrid with matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. In the 2-D case with inputs of length M and N, the outputs are of shape (N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for 'xy' indexing and (M, N, P) for 'ij' indexing. The difference is illustrated by the following code snippet:

xv, yv = np.meshgrid(x, y, indexing='ij')
for i in range(nx):
    for j in range(ny):
        # treat xv[i,j], yv[i,j]

xv, yv = np.meshgrid(x, y, indexing='xy')
for i in range(nx):
    for j in range(ny):
        # treat xv[j,i], yv[j,i]

In the 1-D and 0-D case, the indexing and sparse keywords have no effect.

Parameters

x1, x2,..., xn : array_like

1-D arrays representing the coordinates of a grid.

indexing : {'xy', 'ij'}, optional

Cartesian ('xy', default) or matrix ('ij') indexing of output. See Notes for more details.

versionadded
sparse : bool, optional

If True the shape of the returned coordinate array for dimension i is reduced from (N1, ..., Ni, ... Nn) to (1, ..., 1, Ni, 1, ..., 1) . These sparse coordinate grids are intended to be use with basics.broadcasting . When all coordinates are used in an expression, broadcasting still leads to a fully-dimensonal result array.

Default is False.

versionadded
copy : bool, optional

If False, a view into the original arrays are returned in order to conserve memory. Default is True. Please note that sparse=False, copy=False will likely return non-contiguous arrays. Furthermore, more than one element of a broadcast array may refer to a single memory location. If you need to write to the arrays, make copies first.

versionadded

Returns

X1, X2,..., XN : ndarray

For vectors x1 , :None:None:`x2`,..., 'xn' with lengths Ni=len(xi) , return (N1, N2, N3,...Nn) shaped arrays if indexing='ij' or (N2, N1, N3,...Nn) shaped arrays if indexing='xy' with the elements of :None:None:`xi` repeated to fill the matrix along the first dimension for x1 , the second for :None:None:`x2` and so on.

Return coordinate matrices from coordinate vectors.

See Also

mgrid

Construct a multi-dimensional "meshgrid" using indexing notation.

ogrid

Construct an open multi-dimensional "meshgrid" using indexing notation.

Examples

>>> nx, ny = (3, 2)
... x = np.linspace(0, 1, nx)
... y = np.linspace(0, 1, ny)
... xv, yv = np.meshgrid(x, y)
... xv array([[0. , 0.5, 1. ], [0. , 0.5, 1. ]])
>>> yv
array([[0.,  0.,  0.],
       [1.,  1.,  1.]])
>>> xv, yv = np.meshgrid(x, y, sparse=True)  # make sparse output arrays
... xv array([[0. , 0.5, 1. ]])
>>> yv
array([[0.],
       [1.]])

meshgrid is very useful to evaluate functions on a grid. If the function depends on all coordinates, you can use the parameter sparse=True to save memory and computation time.

>>> x = np.linspace(-5, 5, 101)
... y = np.linspace(-5, 5, 101)
... # full coorindate arrays
... xx, yy = np.meshgrid(x, y)
... zz = np.sqrt(xx**2 + yy**2)
... xx.shape, yy.shape, zz.shape ((101, 101), (101, 101), (101, 101))
>>> # sparse coordinate arrays
... xs, ys = np.meshgrid(x, y, sparse=True)
... zs = np.sqrt(xs**2 + ys**2)
... xs.shape, ys.shape, zs.shape ((1, 101), (101, 1), (101, 101))
>>> np.array_equal(zz, zs)
True
>>> import matplotlib.pyplot as plt
... h = plt.contourf(x, y, zs)
... plt.axis('scaled')
... plt.colorbar()
... plt.show()
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

matplotlib.axes._axes.Axes.contour matplotlib.pyplot.contourf scipy.interpolate._interpolate.RegularGridInterpolator numpy.meshgrid matplotlib.axes._axes.Axes.contourf scipy.interpolate._fitpack2.RectSphereBivariateSpline numpy.ix_ scipy.fft._basic.fftn scipy.interpolate._fitpack2.LSQSphereBivariateSpline numpy.fromfunction dask.array.creation.meshgrid scipy.interpolate._fitpack2.SmoothSphereBivariateSpline scipy.optimize._optimize.rosen scipy.interpolate._interpolate.interpn scipy.interpolate._interpolate.interp2d matplotlib.pyplot.contour scipy.interpolate.interpnd.LinearNDInterpolator numpy.indices scipy.interpolate._ndgriddata.NearestNDInterpolator

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /numpy/lib/function_base.py#4805
type: <class 'function'>
Commit: