numpy 1.22.4 Pypi GitHub Homepage
Other Docs
NotesParametersReturnsBackRef
pad(array, pad_width, mode='constant', **kwargs)

Notes

versionadded

For an array with rank greater than 1, some of the padding of later axes is calculated from padding of previous axes. This is easiest to think about with a rank 2 array where the corners of the padded array are calculated by using padded values from the first axis.

The padding function, if used, should modify a rank 1 array in-place. It has the following signature:

padding_func(vector, iaxis_pad_width, iaxis, kwargs)

where

vector

vector

iaxis_pad_width

iaxis_pad_width

iaxis

iaxis

kwargs

kwargs

Parameters

array : array_like of rank N

The array to pad.

pad_width : {sequence, array_like, int}

Number of values padded to the edges of each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad widths for each axis. ((before, after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for before = after = pad width for all axes.

mode : str or function, optional

One of the following string values or a user supplied function.

'constant' (default)

Pads with a constant value.

'edge'

Pads with the edge values of array.

'linear_ramp'

Pads with the linear ramp between end_value and the array edge value.

'maximum'

Pads with the maximum value of all or part of the vector along each axis.

'mean'

Pads with the mean value of all or part of the vector along each axis.

'median'

Pads with the median value of all or part of the vector along each axis.

'minimum'

Pads with the minimum value of all or part of the vector along each axis.

'reflect'

Pads with the reflection of the vector mirrored on the first and last values of the vector along each axis.

'symmetric'

Pads with the reflection of the vector mirrored along the edge of the array.

'wrap'

Pads with the wrap of the vector along the axis. The first values are used to pad the end and the end values are used to pad the beginning.

'empty'

Pads with undefined values.

versionadded

<function>

Padding function, see Notes.

stat_length : sequence or int, optional

Used in 'maximum', 'mean', 'median', and 'minimum'. Number of values at edge of each axis used to calculate the statistic value.

((before_1, after_1), ... (before_N, after_N)) unique statistic lengths for each axis.

((before, after),) yields same before and after statistic lengths for each axis.

(stat_length,) or int is a shortcut for before = after = statistic length for all axes.

Default is None , to use the entire axis.

constant_values : sequence or scalar, optional

Used in 'constant'. The values to set the padded values for each axis.

((before_1, after_1), ... (before_N, after_N)) unique pad constants for each axis.

((before, after),) yields same before and after constants for each axis.

(constant,) or constant is a shortcut for before = after = constant for all axes.

Default is 0.

end_values : sequence or scalar, optional

Used in 'linear_ramp'. The values used for the ending value of the linear_ramp and that will form the edge of the padded array.

((before_1, after_1), ... (before_N, after_N)) unique end values for each axis.

((before, after),) yields same before and after end values for each axis.

(constant,) or constant is a shortcut for before = after = constant for all axes.

Default is 0.

reflect_type : {'even', 'odd'}, optional

Used in 'reflect', and 'symmetric'. The 'even' style is the default with an unaltered reflection around the edge value. For the 'odd' style, the extended part of the array is created by subtracting the reflected values from two times the edge value.

Returns

pad : ndarray

Padded array of rank equal to array with shape increased according to :None:None:`pad_width`.

Pad an array.

Examples

>>> a = [1, 2, 3, 4, 5]
... np.pad(a, (2, 3), 'constant', constant_values=(4, 6)) array([4, 4, 1, ..., 6, 6, 6])
>>> np.pad(a, (2, 3), 'edge')
array([1, 1, 1, ..., 5, 5, 5])
>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([ 5,  3,  1,  2,  3,  4,  5,  2, -1, -4])
>>> np.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])
>>> np.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
>>> np.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
>>> a = [[1, 2], [3, 4]]
... np.pad(a, ((3, 2), (2, 3)), 'minimum') array([[1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [3, 3, 3, 4, 3, 3, 3], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1]])
>>> a = [1, 2, 3, 4, 5]
... np.pad(a, (2, 3), 'reflect') array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])
>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1,  0,  1,  2,  3,  4,  5,  6,  7,  8])
>>> np.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])
>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])
>>> np.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])
>>> def pad_with(vector, pad_width, iaxis, kwargs):
...  pad_value = kwargs.get('padder', 10)
...  vector[:pad_width[0]] = pad_value
...  vector[-pad_width[1]:] = pad_value
... a = np.arange(6)
... a = a.reshape((2, 3))
... np.pad(a, 2, pad_with) array([[10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 10, 10], [10, 10, 0, 1, 2, 10, 10], [10, 10, 3, 4, 5, 10, 10], [10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 10, 10]])
>>> np.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],
       [100, 100, 100, 100, 100, 100, 100],
       [100, 100,   0,   1,   2, 100, 100],
       [100, 100,   3,   4,   5, 100, 100],
       [100, 100, 100, 100, 100, 100, 100],
       [100, 100, 100, 100, 100, 100, 100]])
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

skimage.transform._geometric._to_ndimage_mode skimage.transform._warps.swirl numpy.resize numpy.lib.arraypad._as_pairs skimage.transform._warps_cy._warp_fast skimage.transform._warps.rotate skimage.morphology._util._fast_pad skimage.restoration.non_local_means.denoise_nl_means skimage.transform._warps._clip_warp_output skimage.transform._warps.resize skimage.restoration._denoise.denoise_bilateral skimage.transform._warps.warp scipy.signal._upfirdn.upfirdn dask.array.creation.pad skimage.transform._warps.rescale

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /numpy/lib/arraypad.py#529
type: <class 'function'>
Commit: