numpy 1.22.4 Pypi GitHub Homepage
Other Docs
NotesParametersReturnsBackRef
concatenate((a1, a2, ...), axis=0, out=None, dtype=None, casting="same_kind")

Notes

When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray object instead of an ndarray, but the input masks are not preserved. In cases where a MaskedArray is expected as input, use the ma.concatenate function from the masked array module instead.

Parameters

a1, a2, ... : sequence of array_like

The arrays must have the same shape, except in the dimension corresponding to :None:None:`axis` (the first, by default).

axis : int, optional

The axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0.

out : ndarray, optional

If provided, the destination to place the result. The shape must be correct, matching that of what concatenate would have returned if no out argument were specified.

dtype : str or dtype

If provided, the destination array will have this dtype. Cannot be provided together with :None:None:`out`.

versionadded
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional

Controls what kind of data casting may occur. Defaults to 'same_kind'.

versionadded

Returns

res : ndarray

The concatenated array.

Join a sequence of arrays along an existing axis.

See Also

array_split

Split an array into multiple sub-arrays of equal or near-equal size.

block

Assemble arrays from blocks.

column_stack

Stack 1-D arrays as columns into a 2-D array.

dsplit

Split array into multiple sub-arrays along the 3rd axis (depth).

dstack

Stack arrays in sequence depth wise (along third dimension).

hsplit

Split array into multiple sub-arrays horizontally (column wise).

hstack

Stack arrays in sequence horizontally (column wise).

ma.concatenate

Concatenate function that preserves input masks.

split

Split array into a list of multiple sub-arrays of equal size.

stack

Stack a sequence of arrays along a new axis.

vsplit

Split array into multiple sub-arrays vertically (row wise).

vstack

Stack arrays in sequence vertically (row wise).

Examples

>>> a = np.array([[1, 2], [3, 4]])
... b = np.array([[5, 6]])
... np.concatenate((a, b), axis=0) array([[1, 2], [3, 4], [5, 6]])
>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
       [3, 4, 6]])
>>> np.concatenate((a, b), axis=None)
array([1, 2, 3, 4, 5, 6])

This function will not preserve masking of MaskedArray inputs.

>>> a = np.ma.arange(3)
... a[1] = np.ma.masked
... b = np.arange(2, 5)
... a masked_array(data=[0, --, 2], mask=[False, True, False], fill_value=999999)
>>> b
array([2, 3, 4])
>>> np.concatenate([a, b])
masked_array(data=[0, 1, 2, 2, 3, 4],
             mask=False,
       fill_value=999999)
>>> np.ma.concatenate([a, b])
masked_array(data=[0, --, 2, 2, 3, 4],
             mask=[False,  True, False, False, False, False],
       fill_value=999999)
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

numpy.hstack numpy.stack numpy.column_stack numpy.ma.extras.dstack numpy.ma.extras.hstack numpy.ma.extras.stack numpy.lib.index_tricks.RClass numpy.block numpy.ma.core.concatenate numpy.vstack numpy.dstack numpy.split numpy.insert numpy.ma.extras.vstack numpy.ma.extras.column_stack

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : None#None
type: <class 'function'>
Commit: