To remove in the future –– numpy.random
Use         default_rng()
 to create a Generator
 and call its methods.
=============== ========================================================= Generator --------------- --------------------------------------------------------- Generator       Class implementing all of the random number distributions default_rng     Default constructor for         Generator
 =============== =========================================================
============================================= === BitGenerator Streams that work with Generator --------------------------------------------- --- MT19937 PCG64 PCG64DXSM Philox SFC64 ============================================= ===
============================================= === Getting entropy to initialize a BitGenerator --------------------------------------------- --- SeedSequence ============================================= ===
For backwards compatibility with previous versions of numpy before 1.17, the various aliases to the global RandomState
 methods are left alone and do not use the new Generator
 API.
==================== ========================================================= Utility functions -------------------- --------------------------------------------------------- random               Uniformly distributed floats over         [0, 1)
 bytes                Uniformly distributed random bytes. permutation          Randomly permute a sequence / generate a random sequence. shuffle              Randomly permute a sequence in place. choice               Random sample from 1-D array. ==================== =========================================================
==================== ========================================================= Compatibility functions - removed in the new API -------------------- --------------------------------------------------------- rand                 Uniformly distributed values. randn                Normally distributed values. ranf                 Uniformly distributed floating point numbers. random_integers      Uniformly distributed integers in a given range.                      (deprecated, use         integers(..., closed=True)
 instead) random_sample        Alias for :None:None:`random_sample` randint              Uniformly distributed integers in a given range seed                 Seed the legacy random number generator. ==================== =========================================================
==================== ========================================================= Univariate distributions -------------------- --------------------------------------------------------- beta                 Beta distribution over         [0, 1]
. binomial             Binomial distribution. chisquare                    $\chi^2$
 distribution. exponential          Exponential distribution. f                    F (Fisher-Snedecor) distribution. gamma                Gamma distribution. geometric            Geometric distribution. gumbel               Gumbel distribution. hypergeometric       Hypergeometric distribution. laplace              Laplace distribution. logistic             Logistic distribution. lognormal            Log-normal distribution. logseries            Logarithmic series distribution. negative_binomial    Negative binomial distribution. noncentral_chisquare Non-central chi-square distribution. noncentral_f         Non-central F distribution. normal               Normal / Gaussian distribution. pareto               Pareto distribution. poisson              Poisson distribution. power                Power distribution. rayleigh             Rayleigh distribution. triangular           Triangular distribution. uniform              Uniform distribution. vonmises             Von Mises circular distribution. wald                 Wald (inverse Gaussian) distribution. weibull              Weibull distribution. zipf                 Zipf's distribution over ranked data. ==================== =========================================================
==================== ========================================================== Multivariate distributions -------------------- ---------------------------------------------------------- dirichlet Multivariate generalization of Beta distribution. multinomial Multivariate generalization of the binomial distribution. multivariate_normal Multivariate generalization of the normal distribution. ==================== ==========================================================
==================== ========================================================= Standard distributions -------------------- --------------------------------------------------------- standard_cauchy Standard Cauchy-Lorentz distribution. standard_exponential Standard exponential distribution. standard_gamma Standard Gamma distribution. standard_normal Standard normal distribution. standard_t Standard Student's t-distribution. ==================== =========================================================
==================== ========================================================= Internal functions -------------------- --------------------------------------------------------- get_state Get tuple representing internal state of generator. set_state Set state of generator. ==================== =========================================================
The following pages refer to to this document either explicitly or contain code examples using this.
skimage.feature._canny.cannyskimage._shared._warnings.expected_warningsskimage.restoration.deconvolution.wienerskimage.restoration._denoise.denoise_waveletskimage.measure.fit.ransacskimage.restoration.non_local_means.denoise_nl_meansskimage.filters.edges._reshape_ndskimage.restoration.j_invariant.calibrate_denoiserskimage.transform._hough_transform._hough_lineskimage.restoration._denoise.estimate_sigmaskimage.io._io.showskimage.restoration.deconvolution.unsupervised_wienerskimage.segmentation.random_walker_segmentation.random_walkerskimage.transform._warps.warpskimage.restoration._denoise.denoise_bilateralskimage.feature.orb.ORBskimage.restoration._denoise.denoise_tv_chambolleskimage.transform.hough_transform.hough_lineskimage.restoration.deconvolution.richardson_lucyskimage.restoration._cycle_spin.cycle_spindask.array.routines.fliplrdask.array.core.from_arraydask.array.random.RandomState.gammadask.array.random.RandomState.triangulardask.array.random.RandomState.chisquaredask.array.random.RandomState.binomialdask.array.random.RandomState.multinomialdask.array.random.RandomState.standard_gammadask.array.random.RandomState.randintdask.array.random.RandomState.standard_tdask.array.random.RandomState.noncentral_chisquaredask.array.random.RandomState.standard_cauchydask.array.random.RandomState.negative_binomialdask.array.random.RandomState.weibulldask.array.random.RandomState.laplacedask.array.random.RandomState.paretodask.array.random.RandomState.powerdask.array.routines.flipuddask.array.routines.corrcoefdask.array.random.RandomState.logisticdask.array.random.RandomState.lognormaldask.array.random.RandomState.tomaxintdask.array.random.RandomState.permutationdask.array.random.RandomState.random_integersdask.array.random.RandomState.poissondask.array.random.RandomState.zipfdask.array.random.RandomState.hypergeometricdask.array.random.RandomState.uniformdask.array.random.RandomState.choicedask.array.random.RandomState.rayleighdask.array.random.RandomState.vonmisesdask.array.random.RandomState.noncentral_fdask.array.random.RandomState.fdask.array.random.RandomState.random_sampledask.array.random.RandomState.walddask.array.random.RandomState.standard_normaldask.array.random.RandomState.logseriesdask.array.random.RandomState.normaldask.array.random.RandomState.standard_exponentialdask.array.random.RandomState.gumbeldask.array.random.RandomState.geometricscipy.spatial._kdtree.KDTree.count_neighborsscipy.spatial._qhull.ConvexHullscipy.fft._realtransforms.idctnscipy.signal._bsplines.cspline1d_evalscipy.optimize._basinhopping.basinhoppingscipy.interpolate._bsplines.make_lsq_splinescipy.fft._helper.next_fast_lenscipy.linalg._expm_frechet.expm_frechetscipy.signal._signaltools.choose_conv_methodscipy.signal._signaltools.lfilterscipy.linalg.blas.get_blas_funcsscipy.interpolate._ndgriddata.griddatascipy.signal._signaltools.detrendscipy.signal._bsplines.cspline1dscipy.signal._signaltools.oaconvolvescipy.linalg.blas.find_best_blas_typescipy.linalg._decomp_svd.subspace_anglesscipy.sparse.linalg._eigen.lobpcg.lobpcg.lobpcgscipy.optimize._optimize.check_gradscipy.signal._signaltools.filtfiltscipy.fft._basic.ifftscipy.interpolate._fitpack2.UnivariateSplinescipy.linalg._decomp_svd.null_spacescipy.sparse._construct.randomscipy.signal._spectral_py.csdscipy.spatial._plotutils.voronoi_plot_2dscipy.fft._realtransforms.idstnscipy.spatial._kdtree.KDTree.query_pairsscipy.signal._signaltools.correlatescipy.spatial._plotutils.convex_hull_plot_2dscipy.spatial._kdtree.KDTree.sparse_distance_matrixscipy.linalg._decomp_qz.qzscipy.signal._spectral_py.istftscipy.interpolate._ndgriddata.NearestNDInterpolatorscipy.linalg._decomp_qr.qrscipy.linalg._basic.pinvscipy.signal._signaltools.correlate2dscipy.signal._signaltools.wienerscipy.signal._bsplines.qspline1dscipy.fft._realtransforms.dctnscipy.interpolate._polyint.KroghInterpolatorscipy.spatial._qhull.tsearchscipy.signal._spectral_py.lombscarglescipy.interpolate._fitpack2.LSQUnivariateSplinescipy.signal._filter_design.freqzscipy.sparse.linalg._eigen._svds.svdsscipy.signal._signaltools.sosfiltfiltscipy.signal._signaltools.correlation_lagsscipy.signal._bsplines.qspline1d_evalscipy.fft._basic.ifftnscipy.signal._spectral_py.welchscipy.spatial._plotutils.delaunay_plot_2dscipy.interpolate._fitpack2.InterpolatedUnivariateSplinescipy.signal._spectral_py.spectrogramscipy.interpolate._rbfinterp.RBFInterpolatorscipy.optimize._minpack_py.curve_fitscipy.fft._pocketfft.helper.set_workersscipy.signal._spectral_py.periodogramscipy.linalg._decomp_svd.svdscipy.optimize._zeros_py.newtonscipy.spatial._kdtree.KDTree.query_ball_treescipy.interpolate._rbf.Rbfscipy.linalg.lapack.get_lapack_funcsscipy.signal._signaltools.fftconvolvescipy.signal._spectral_py.coherencescipy.signal._spectral_py.stftscipy.linalg._basic.pinvhscipy.fft._basic.fftnscipy.fft._realtransforms.dstnscipy.linalg._decomp_qr.rqscipy.interpolate.interpnd.LinearNDInterpolatorpandas.core.reshape.melt.wide_to_longpandas.core.frame.DataFrame.covpandas.core.series.Series.infopandas.io.pytables.HDFStorepandas.core.frame.DataFrame.infoHover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them