To remove in the future –– numpy.random
Use default_rng()
to create a Generator
and call its methods.
=============== ========================================================= Generator --------------- --------------------------------------------------------- Generator Class implementing all of the random number distributions default_rng Default constructor for Generator
=============== =========================================================
============================================= === BitGenerator Streams that work with Generator --------------------------------------------- --- MT19937 PCG64 PCG64DXSM Philox SFC64 ============================================= ===
============================================= === Getting entropy to initialize a BitGenerator --------------------------------------------- --- SeedSequence ============================================= ===
For backwards compatibility with previous versions of numpy before 1.17, the various aliases to the global RandomState
methods are left alone and do not use the new Generator
API.
==================== ========================================================= Utility functions -------------------- --------------------------------------------------------- random Uniformly distributed floats over [0, 1)
bytes Uniformly distributed random bytes. permutation Randomly permute a sequence / generate a random sequence. shuffle Randomly permute a sequence in place. choice Random sample from 1-D array. ==================== =========================================================
==================== ========================================================= Compatibility functions - removed in the new API -------------------- --------------------------------------------------------- rand Uniformly distributed values. randn Normally distributed values. ranf Uniformly distributed floating point numbers. random_integers Uniformly distributed integers in a given range. (deprecated, use integers(..., closed=True)
instead) random_sample Alias for :None:None:`random_sample` randint Uniformly distributed integers in a given range seed Seed the legacy random number generator. ==================== =========================================================
==================== ========================================================= Univariate distributions -------------------- --------------------------------------------------------- beta Beta distribution over [0, 1]
. binomial Binomial distribution. chisquare $\chi^2$
distribution. exponential Exponential distribution. f F (Fisher-Snedecor) distribution. gamma Gamma distribution. geometric Geometric distribution. gumbel Gumbel distribution. hypergeometric Hypergeometric distribution. laplace Laplace distribution. logistic Logistic distribution. lognormal Log-normal distribution. logseries Logarithmic series distribution. negative_binomial Negative binomial distribution. noncentral_chisquare Non-central chi-square distribution. noncentral_f Non-central F distribution. normal Normal / Gaussian distribution. pareto Pareto distribution. poisson Poisson distribution. power Power distribution. rayleigh Rayleigh distribution. triangular Triangular distribution. uniform Uniform distribution. vonmises Von Mises circular distribution. wald Wald (inverse Gaussian) distribution. weibull Weibull distribution. zipf Zipf's distribution over ranked data. ==================== =========================================================
==================== ========================================================== Multivariate distributions -------------------- ---------------------------------------------------------- dirichlet Multivariate generalization of Beta distribution. multinomial Multivariate generalization of the binomial distribution. multivariate_normal Multivariate generalization of the normal distribution. ==================== ==========================================================
==================== ========================================================= Standard distributions -------------------- --------------------------------------------------------- standard_cauchy Standard Cauchy-Lorentz distribution. standard_exponential Standard exponential distribution. standard_gamma Standard Gamma distribution. standard_normal Standard normal distribution. standard_t Standard Student's t-distribution. ==================== =========================================================
==================== ========================================================= Internal functions -------------------- --------------------------------------------------------- get_state Get tuple representing internal state of generator. set_state Set state of generator. ==================== =========================================================
The following pages refer to to this document either explicitly or contain code examples using this.
skimage.feature._canny.cannyskimage._shared._warnings.expected_warningsskimage.restoration.deconvolution.wienerskimage.restoration._denoise.denoise_waveletskimage.measure.fit.ransacskimage.restoration.non_local_means.denoise_nl_meansskimage.filters.edges._reshape_ndskimage.restoration.j_invariant.calibrate_denoiserskimage.transform._hough_transform._hough_lineskimage.restoration._denoise.estimate_sigmaskimage.io._io.showskimage.restoration.deconvolution.unsupervised_wienerskimage.segmentation.random_walker_segmentation.random_walkerskimage.transform._warps.warpskimage.restoration._denoise.denoise_bilateralskimage.feature.orb.ORBskimage.restoration._denoise.denoise_tv_chambolleskimage.transform.hough_transform.hough_lineskimage.restoration.deconvolution.richardson_lucyskimage.restoration._cycle_spin.cycle_spindask.array.routines.fliplrdask.array.core.from_arraydask.array.random.RandomState.gammadask.array.random.RandomState.triangulardask.array.random.RandomState.chisquaredask.array.random.RandomState.binomialdask.array.random.RandomState.multinomialdask.array.random.RandomState.standard_gammadask.array.random.RandomState.randintdask.array.random.RandomState.standard_tdask.array.random.RandomState.noncentral_chisquaredask.array.random.RandomState.standard_cauchydask.array.random.RandomState.negative_binomialdask.array.random.RandomState.weibulldask.array.random.RandomState.laplacedask.array.random.RandomState.paretodask.array.random.RandomState.powerdask.array.routines.flipuddask.array.routines.corrcoefdask.array.random.RandomState.logisticdask.array.random.RandomState.lognormaldask.array.random.RandomState.tomaxintdask.array.random.RandomState.permutationdask.array.random.RandomState.random_integersdask.array.random.RandomState.poissondask.array.random.RandomState.zipfdask.array.random.RandomState.hypergeometricdask.array.random.RandomState.uniformdask.array.random.RandomState.choicedask.array.random.RandomState.rayleighdask.array.random.RandomState.vonmisesdask.array.random.RandomState.noncentral_fdask.array.random.RandomState.fdask.array.random.RandomState.random_sampledask.array.random.RandomState.walddask.array.random.RandomState.standard_normaldask.array.random.RandomState.logseriesdask.array.random.RandomState.normaldask.array.random.RandomState.standard_exponentialdask.array.random.RandomState.gumbeldask.array.random.RandomState.geometricscipy.spatial._kdtree.KDTree.count_neighborsscipy.spatial._qhull.ConvexHullscipy.fft._realtransforms.idctnscipy.signal._bsplines.cspline1d_evalscipy.optimize._basinhopping.basinhoppingscipy.interpolate._bsplines.make_lsq_splinescipy.fft._helper.next_fast_lenscipy.linalg._expm_frechet.expm_frechetscipy.signal._signaltools.choose_conv_methodscipy.signal._signaltools.lfilterscipy.linalg.blas.get_blas_funcsscipy.interpolate._ndgriddata.griddatascipy.signal._signaltools.detrendscipy.signal._bsplines.cspline1dscipy.signal._signaltools.oaconvolvescipy.linalg.blas.find_best_blas_typescipy.linalg._decomp_svd.subspace_anglesscipy.sparse.linalg._eigen.lobpcg.lobpcg.lobpcgscipy.optimize._optimize.check_gradscipy.signal._signaltools.filtfiltscipy.fft._basic.ifftscipy.interpolate._fitpack2.UnivariateSplinescipy.linalg._decomp_svd.null_spacescipy.sparse._construct.randomscipy.signal._spectral_py.csdscipy.spatial._plotutils.voronoi_plot_2dscipy.fft._realtransforms.idstnscipy.spatial._kdtree.KDTree.query_pairsscipy.signal._signaltools.correlatescipy.spatial._plotutils.convex_hull_plot_2dscipy.spatial._kdtree.KDTree.sparse_distance_matrixscipy.linalg._decomp_qz.qzscipy.signal._spectral_py.istftscipy.interpolate._ndgriddata.NearestNDInterpolatorscipy.linalg._decomp_qr.qrscipy.linalg._basic.pinvscipy.signal._signaltools.correlate2dscipy.signal._signaltools.wienerscipy.signal._bsplines.qspline1dscipy.fft._realtransforms.dctnscipy.interpolate._polyint.KroghInterpolatorscipy.spatial._qhull.tsearchscipy.signal._spectral_py.lombscarglescipy.interpolate._fitpack2.LSQUnivariateSplinescipy.signal._filter_design.freqzscipy.sparse.linalg._eigen._svds.svdsscipy.signal._signaltools.sosfiltfiltscipy.signal._signaltools.correlation_lagsscipy.signal._bsplines.qspline1d_evalscipy.fft._basic.ifftnscipy.signal._spectral_py.welchscipy.spatial._plotutils.delaunay_plot_2dscipy.interpolate._fitpack2.InterpolatedUnivariateSplinescipy.signal._spectral_py.spectrogramscipy.interpolate._rbfinterp.RBFInterpolatorscipy.optimize._minpack_py.curve_fitscipy.fft._pocketfft.helper.set_workersscipy.signal._spectral_py.periodogramscipy.linalg._decomp_svd.svdscipy.optimize._zeros_py.newtonscipy.spatial._kdtree.KDTree.query_ball_treescipy.interpolate._rbf.Rbfscipy.linalg.lapack.get_lapack_funcsscipy.signal._signaltools.fftconvolvescipy.signal._spectral_py.coherencescipy.signal._spectral_py.stftscipy.linalg._basic.pinvhscipy.fft._basic.fftnscipy.fft._realtransforms.dstnscipy.linalg._decomp_qr.rqscipy.interpolate.interpnd.LinearNDInterpolatorpandas.core.reshape.melt.wide_to_longpandas.core.frame.DataFrame.covpandas.core.series.Series.infopandas.io.pytables.HDFStorepandas.core.frame.DataFrame.infoHover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them