scipy 1.8.0 Pypi GitHub Homepage
Other Docs
NotesParametersReturnsBackRef
periodogram(x, fs=1.0, window='boxcar', nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1)

Notes

versionadded

Parameters

x : array_like

Time series of measurement values

fs : float, optional

Sampling frequency of the x time series. Defaults to 1.0.

window : str or tuple or array_like, optional

Desired window to use. If :None:None:`window` is a string or tuple, it is passed to get_window to generate the window values, which are DFT-even by default. See get_window for a list of windows and required parameters. If :None:None:`window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to 'boxcar'.

nfft : int, optional

Length of the FFT used. If :None:None:`None` the length of x will be used.

detrend : str or function or `False`, optional

Specifies how to detrend each segment. If detrend is a string, it is passed as the :None:None:`type` argument to the detrend function. If it is a function, it takes a segment and returns a detrended segment. If detrend is :None:None:`False`, no detrending is done. Defaults to 'constant'.

return_onesided : bool, optional

If :None:None:`True`, return a one-sided spectrum for real data. If :None:None:`False` return a two-sided spectrum. Defaults to :None:None:`True`, but for complex data, a two-sided spectrum is always returned.

scaling : { 'density', 'spectrum' }, optional

Selects between computing the power spectral density ('density') where :None:None:`Pxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where :None:None:`Pxx` has units of V**2, if x is measured in V and :None:None:`fs` is measured in Hz. Defaults to 'density'

axis : int, optional

Axis along which the periodogram is computed; the default is over the last axis (i.e. axis=-1 ).

Returns

f : ndarray

Array of sample frequencies.

Pxx : ndarray

Power spectral density or power spectrum of x.

Estimate power spectral density using a periodogram.

See Also

lombscargle

Lomb-Scargle periodogram for unevenly sampled data

welch

Estimate power spectral density using Welch's method

Examples

>>> from scipy import signal
... import matplotlib.pyplot as plt
... rng = np.random.default_rng()

Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz.

>>> fs = 10e3
... N = 1e5
... amp = 2*np.sqrt(2)
... freq = 1234.0
... noise_power = 0.001 * fs / 2
... time = np.arange(N) / fs
... x = amp*np.sin(2*np.pi*freq*time)
... x += rng.normal(scale=np.sqrt(noise_power), size=time.shape)

Compute and plot the power spectral density.

>>> f, Pxx_den = signal.periodogram(x, fs)
... plt.semilogy(f, Pxx_den)
... plt.ylim([1e-7, 1e2])
... plt.xlabel('frequency [Hz]')
... plt.ylabel('PSD [V**2/Hz]')
... plt.show()

If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal.

>>> np.mean(Pxx_den[25000:])
0.000985320699252543

Now compute and plot the power spectrum.

>>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')
... plt.figure()
... plt.semilogy(f, np.sqrt(Pxx_spec))
... plt.ylim([1e-4, 1e1])
... plt.xlabel('frequency [Hz]')
... plt.ylabel('Linear spectrum [V RMS]')
... plt.show()

The peak height in the power spectrum is an estimate of the RMS amplitude.

>>> np.sqrt(Pxx_spec.max())
2.0077340678640727
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

scipy.signal._spectral_py.welch scipy.signal._spectral_py.coherence scipy.signal._spectral_py.csd scipy.signal._spectral_py.periodogram scipy.signal._spectral_py.spectrogram

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/signal/_spectral_py.py#156
type: <class 'function'>
Commit: