numpy 1.22.4 Pypi GitHub Homepage
Other Docs
ParametersReturnsBackRef
asarray(a, dtype=None, order=None, *, like=None)

Parameters

a : array_like

Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.

dtype : data-type, optional

By default, the data-type is inferred from the input data.

order : {'C', 'F', 'A', 'K'}, optional

Memory layout. 'A' and 'K' depend on the order of input array a. 'C' row-major (C-style), 'F' column-major (Fortran-style) memory representation. 'A' (any) means 'F' if a is Fortran contiguous, 'C' otherwise 'K' (keep) preserve input order Defaults to 'K'.

like : array_like

Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like supports the __array_function__ protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.

versionadded

Returns

out : ndarray

Array interpretation of a. No copy is performed if the input is already an ndarray with matching dtype and order. If a is a subclass of ndarray, a base class ndarray is returned.

Convert the input to an array.

See Also

asanyarray

Similar function which passes through subclasses.

asarray_chkfinite

Similar function which checks input for NaNs and Infs.

ascontiguousarray

Convert input to a contiguous array.

asfarray

Convert input to a floating point ndarray.

asfortranarray

Convert input to an ndarray with column-major memory order.

fromfunction

Construct an array by executing a function on grid positions.

fromiter

Create an array from an iterator.

Examples

Convert a list into an array:

>>> a = [1, 2]
... np.asarray(a) array([1, 2])

Existing arrays are not copied:

>>> a = np.array([1, 2])
... np.asarray(a) is a True

If dtype is set, array is copied only if dtype does not match:

>>> a = np.array([1, 2], dtype=np.float32)
... np.asarray(a, dtype=np.float32) is a True
>>> np.asarray(a, dtype=np.float64) is a
False

Contrary to asanyarray , ndarray subclasses are not passed through:

>>> issubclass(np.recarray, np.ndarray)
True
>>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
... np.asarray(a) is a False
>>> np.asanyarray(a) is a
True
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

scipy.spatial._kdtree.KDTree.query_ball_point scipy.optimize._optimize.fmin_cg pandas.core.series.Series.__array__ numpy.asarray_chkfinite scipy.spatial.transform._rotation.Rotation pandas.core.dtypes.cast.infer_dtype_from_array numpy.ma.core.asanyarray numpy.require scipy.signal._ltisys.dlsim numpy.asanyarray dask.array.chunk_types.register_chunk_type

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : None#None
type: <class 'builtin_function_or_method'>
Commit: