ellipse_perimeter(r, c, r_radius, c_radius, orientation=0, shape=None)
Centre coordinate of ellipse.
Minor and major semi-axes. (r/r_radius)**2 + (c/c_radius)**2 = 1
.
Major axis orientation in clockwise direction as radians.
Image shape which is used to determine the maximum extent of output pixel coordinates. This is useful for ellipses that exceed the image size. If None, the full extent of the ellipse is used. Must be at least length 2. Only the first two values are used to determine the extent of the input image.
Indices of pixels that belong to the ellipse perimeter. May be used to directly index into an array, e.g. img[rr, cc] = 1
.
Generate ellipse perimeter coordinates.
>>> from skimage.draw import ellipse_perimeter
... img = np.zeros((10, 10), dtype=np.uint8)
... rr, cc = ellipse_perimeter(5, 5, 3, 4)
... img[rr, cc] = 1
... img array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
Note that the positions of ellipse
without specified shape
can have also, negative values, as this is correct on the plane. On the other hand using these ellipse positions for an image afterwards may lead to appearing on the other side of image, because image[-1, -1] = image[end-1, end-1]
>>> rr, cc = ellipse_perimeter(2, 3, 4, 5)See :
... img = np.zeros((9, 12), dtype=np.uint8)
... img[rr, cc] = 1
... img array([[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]], dtype=uint8)
The following pages refer to to this document either explicitly or contain code examples using this.
skimage.draw.draw.ellipse_perimeter
skimage.transform.hough_transform.hough_ellipse
skimage.transform._hough_transform._hough_ellipse
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them