romb(y, dx=1.0, axis=-1, show=False)
A vector of 2**k + 1
equally-spaced samples of a function.
The sample spacing. Default is 1.
The axis along which to integrate. Default is -1 (last axis).
When y
is a single 1-D array, then if this argument is True print the table showing Richardson extrapolation from the samples. Default is False.
The integrated result for :None:None:`axis`
.
Romberg integration using samples of a function.
cumulative_trapezoid
cumulative integration for sampled data
dblquad
double integrals
fixed_quad
fixed-order Gaussian quadrature
ode
ODE integrators
odeint
ODE integrators
quad
adaptive quadrature using QUADPACK
quadrature
adaptive Gaussian quadrature
romberg
adaptive Romberg quadrature
simpson
integrators for sampled data
tplquad
triple integrals
>>> from scipy import integrate
... x = np.arange(10, 14.25, 0.25)
... y = np.arange(3, 12)
>>> integrate.romb(y) 56.0
>>> y = np.sin(np.power(x, 2.5))
... integrate.romb(y) -0.742561336672229
>>> integrate.romb(y, show=True) Richardson Extrapolation Table for Romberg Integration ==================================================================== -0.81576 4.63862 6.45674 -1.10581 -3.02062 -3.65245 -2.57379 -3.06311 -3.06595 -3.05664 -1.34093 -0.92997 -0.78776 -0.75160 -0.74256 ==================================================================== -0.742561336672229See :
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.integrate._quadrature.simpson
scipy.integrate._quadpack_py.dblquad
scipy.integrate._quadrature.quadrature
scipy.integrate._quadrature.romb
scipy.integrate._quadrature.fixed_quad
scipy.integrate._quadrature.cumulative_trapezoid
scipy.integrate._quadpack_py.quad
scipy.integrate._quadrature.romberg
scipy.integrate._quadpack_py.tplquad
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them