numpy 1.22.4 Pypi GitHub Homepage
Other Docs
ParametersBackRef
array(data, dtype=None, copy=False, order=None, mask=False, fill_value=None, keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0)

Masked values of True exclude the corresponding element from any computation.

Construction:

x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True,
                ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,
                shrink=True, order=None)

Parameters

data : array_like

Input data.

mask : sequence, optional

Mask. Must be convertible to an array of booleans with the same shape as :None:None:`data`. True indicates a masked (i.e. invalid) data.

dtype : dtype, optional

Data type of the output. If dtype is None, the type of the data argument ( data.dtype ) is used. If dtype is not None and different from data.dtype , a copy is performed.

copy : bool, optional

Whether to copy the input data (True), or to use a reference instead. Default is False.

subok : bool, optional

Whether to return a subclass of MaskedArray if possible (True) or a plain MaskedArray . Default is True.

ndmin : int, optional

Minimum number of dimensions. Default is 0.

fill_value : scalar, optional

Value used to fill in the masked values when necessary. If None, a default based on the data-type is used.

keep_mask : bool, optional

Whether to combine :None:None:`mask` with the mask of the input data, if any (True), or to use only :None:None:`mask` for the output (False). Default is True.

hard_mask : bool, optional

Whether to use a hard mask or not. With a hard mask, masked values cannot be unmasked. Default is False.

shrink : bool, optional

Whether to force compression of an empty mask. Default is True.

order : {'C', 'F', 'A'}, optional

Specify the order of the array. If order is 'C', then the array will be in C-contiguous order (last-index varies the fastest). If order is 'F', then the returned array will be in Fortran-contiguous order (first-index varies the fastest). If order is 'A' (default), then the returned array may be in any order (either C-, Fortran-contiguous, or even discontiguous), unless a copy is required, in which case it will be C-contiguous.

An array class with possibly masked values.

Examples

The mask can be initialized with an array of boolean values with the same shape as data .

This example is valid syntax, but we were not able to check execution
>>> data = np.arange(6).reshape((2, 3))
... np.ma.MaskedArray(data, mask=[[False, True, False],
...  [False, False, True]]) masked_array( data=[[0, --, 2], [3, 4, --]], mask=[[False, True, False], [False, False, True]], fill_value=999999)

Alternatively, the mask can be initialized to homogeneous boolean array with the same shape as data by passing in a scalar boolean value:

This example is valid syntax, but we were not able to check execution
>>> np.ma.MaskedArray(data, mask=False)
masked_array(
  data=[[0, 1, 2],
        [3, 4, 5]],
  mask=[[False, False, False],
        [False, False, False]],
  fill_value=999999)
This example is valid syntax, but we were not able to check execution
>>> np.ma.MaskedArray(data, mask=True)
masked_array(
  data=[[--, --, --],
        [--, --, --]],
  mask=[[ True,  True,  True],
        [ True,  True,  True]],
  fill_value=999999,
  dtype=int64)
note

The recommended practice for initializing mask with a scalar boolean value is to use True / False rather than np.True_ / np.False_ . The reason is :None:attr:`nomask` is represented internally as np.False_ .

>>> np.False_ is np.ma.nomask
True
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

dask.array.ma.filled dask.array.ma.fix_invalid dask.array.ma.average scipy.special._logsumexp.logsumexp

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /numpy/ma/core.py#6552
type: <class 'function'>
Commit: