numpy 1.22.4 Pypi GitHub Homepage
Other Docs
ParametersReturns
fromstring(datastring, dtype=None, shape=None, offset=0, formats=None, names=None, titles=None, aligned=False, byteorder=None)

Note that despite the name of this function it does not accept :None:None:`str` instances.

Parameters

datastring : bytes-like

Buffer of binary data

dtype : data-type, optional

Valid dtype for all arrays

shape : int or tuple of ints, optional

Shape of each array.

offset : int, optional

Position in the buffer to start reading from.

formats, names, titles, aligned, byteorder :

If dtype is None , these arguments are passed to numpy.format_parser to construct a dtype. See that function for detailed documentation.

Returns

np.recarray

Record array view into the data in datastring. This will be readonly if :None:None:`datastring` is readonly.

Create a record array from binary data

See Also

numpy.frombuffer

Examples

>>> a = b'\x01\x02\x03abc'
... np.core.records.fromstring(a, dtype='u1,u1,u1,S3') rec.array([(1, 2, 3, b'abc')], dtype=[('f0', 'u1'), ('f1', 'u1'), ('f2', 'u1'), ('f3', 'S3')])
>>> grades_dtype = [('Name', (np.str_, 10)), ('Marks', np.float64),
...  ('GradeLevel', np.int32)]
... grades_array = np.array([('Sam', 33.3, 3), ('Mike', 44.4, 5),
...  ('Aadi', 66.6, 6)], dtype=grades_dtype)
... np.core.records.fromstring(grades_array.tobytes(), dtype=grades_dtype) rec.array([('Sam', 33.3, 3), ('Mike', 44.4, 5), ('Aadi', 66.6, 6)], dtype=[('Name', '<U10'), ('Marks', '<f8'), ('GradeLevel', '<i4')])
This example is valid syntax, but raise an exception at execution
>>> s = '\x01\x02\x03abc'
... np.core.records.fromstring(s, dtype='u1,u1,u1,S3') Traceback (most recent call last) ... TypeError: a bytes-like object is required, not 'str'
See :

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /numpy/core/records.py#768
type: <class 'function'>
Commit: