numpy 1.22.4 Pypi GitHub Homepage
Other Docs
NotesParametersReturns
array(obj, dtype=None, shape=None, offset=0, strides=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, copy=True)

A general-purpose record array constructor that dispatches to the appropriate recarray creation function based on the inputs (see Notes).

Notes

If :None:None:`obj` is None , then call the ~numpy.recarray constructor. If :None:None:`obj` is a string, then call the fromstring constructor. If :None:None:`obj` is a list or a tuple, then if the first object is an ~numpy.ndarray , call fromarrays , otherwise call fromrecords . If :None:None:`obj` is a ~numpy.recarray , then make a copy of the data in the recarray (if copy=True ) and use the new formats, names, and titles. If :None:None:`obj` is a file, then call fromfile . Finally, if obj is an ndarray , then return obj.view(recarray) , making a copy of the data if copy=True .

Parameters

obj : any

Input object. See Notes for details on how various input types are treated.

dtype : data-type, optional

Valid dtype for array.

shape : int or tuple of ints, optional

Shape of each array.

offset : int, optional

Position in the file or buffer to start reading from.

strides : tuple of ints, optional

Buffer (:None:None:`buf`) is interpreted according to these strides (strides define how many bytes each array element, row, column, etc. occupy in memory).

formats, names, titles, aligned, byteorder :

If dtype is None , these arguments are passed to numpy.format_parser to construct a dtype. See that function for detailed documentation.

copy : bool, optional

Whether to copy the input object (True), or to use a reference instead. This option only applies when the input is an ndarray or recarray. Defaults to True.

Returns

np.recarray

Record array created from the specified object.

Construct a record array from a wide-variety of objects.

Examples

>>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
>>> np.core.records.array(a)
rec.array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]],
    dtype=int32)
>>> b = [(1, 1), (2, 4), (3, 9)]
... c = np.core.records.array(b, formats = ['i2', 'f2'], names = ('x', 'y'))
... c rec.array([(1, 1.0), (2, 4.0), (3, 9.0)], dtype=[('x', '<i2'), ('y', '<f2')])
>>> c.x
rec.array([1, 2, 3], dtype=int16)
>>> c.y
rec.array([ 1.0,  4.0,  9.0], dtype=float16)
>>> r = np.rec.array(['abc','def'], names=['col1','col2'])
... print(r.col1) abc
>>> r.col1
array('abc', dtype='<U3')
>>> r.col2
array('def', dtype='<U3')
See :

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /numpy/core/records.py#953
type: <class 'function'>
Commit: