assert_almost_equal(actual, desired, decimal=7, err_msg='', verbose=True)
:None:None:`assert_array_almost_equal_nulp`
or :None:None:`assert_array_max_ulp`
instead of this function for more consistent floating point comparisons.
The test verifies that the elements of :None:None:`actual`
and :None:None:`desired`
satisfy.
abs(desired-actual) < 1.5 * 10**(-decimal)
That is a looser test than originally documented, but agrees with what the actual implementation in assert_array_almost_equal
did up to rounding vagaries. An exception is raised at conflicting values. For ndarrays this delegates to assert_array_almost_equal
The object to check.
The expected object.
Desired precision, default is 7.
The error message to be printed in case of failure.
If True, the conflicting values are appended to the error message.
If actual and desired are not equal up to specified precision.
Raises an AssertionError if two items are not equal up to desired precision.
assert_allclose
Compare two array_like objects for equality with desired relative and/or absolute precision.
>>> from numpy.testing import assert_almost_equalThis example is valid syntax, but we were not able to check execution
... assert_almost_equal(2.3333333333333, 2.33333334)
... assert_almost_equal(2.3333333333333, 2.33333334, decimal=10) Traceback (most recent call last): ... AssertionError: Arrays are not almost equal to 10 decimals ACTUAL: 2.3333333333333 DESIRED: 2.33333334
>>> assert_almost_equal(np.array([1.0,2.3333333333333]),See :
... np.array([1.0,2.33333334]), decimal=9) Traceback (most recent call last): ... AssertionError: Arrays are not almost equal to 9 decimals <BLANKLINE> Mismatched elements: 1 / 2 (50%) Max absolute difference: 6.66669964e-09 Max relative difference: 2.85715698e-09 x: array([1. , 2.333333333]) y: array([1. , 2.33333334])
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them