subplots(nrows=1, ncols=1, *, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw)
This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing figure object, in a single call.
Number of rows/columns of the subplot grid.
Controls sharing of properties among x (sharex) or y (sharey) axes:
True or 'all': x- or y-axis will be shared among all subplots.
False or 'none': each subplot x- or y-axis will be independent.
'row': each subplot row will share an x- or y-axis.
'col': each subplot column will share an x- or y-axis.
When subplots have a shared x-axis along a column, only the x tick labels of the bottom subplot are created. Similarly, when subplots have a shared y-axis along a row, only the y tick labels of the first column subplot are created. To later turn other subplots' ticklabels on, use tick_params
.
When subplots have a shared axis that has units, calling ~matplotlib.axis.Axis.set_units
will update each axis with the new units.
If True, extra dimensions are squeezed out from the returned array of Axes
:
if only one subplot is constructed (nrows=ncols=1), the resulting single Axes object is returned as a scalar.
for Nx1 or 1xM subplots, the returned object is a 1D numpy object array of Axes objects.
for NxM, subplots with N>1 and M>1 are returned as a 2D array.
If False, no squeezing at all is done: the returned Axes object is always a 2D array containing Axes instances, even if it ends up being 1x1.
Dict with keywords passed to the add_subplot
call used to create each subplot.
Dict with keywords passed to the ~matplotlib.gridspec.GridSpec
constructor used to create the grid the subplots are placed on.
All additional keyword arguments are passed to the .pyplot.figure
call.
ax can be either a single Axes
object or an array of Axes objects if more than one subplot was created. The dimensions of the resulting array can be controlled with the squeeze keyword, see above.
Typical idioms for handling the return value are:
# using the variable ax for single a Axes fig, ax = plt.subplots() # using the variable axs for multiple Axes fig, axs = plt.subplots(2, 2) # using tuple unpacking for multiple Axes fig, (ax1, ax2) = plt.subplots(1, 2) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
The names ax
and pluralized axs
are preferred over axes
because for the latter it's not clear if it refers to a single :None:None:`~.axes.Axes`
instance or a collection of these.
Create a figure and a set of subplots.
# First create some toy data: x = np.linspace(0, 2*np.pi, 400) y = np.sin(x**2)
# Create just a figure and only one subplot fig, ax = plt.subplots() ax.plot(x, y) ax.set_title('Simple plot')
# Create two subplots and unpack the output array immediately f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.plot(x, y) ax1.set_title('Sharing Y axis') ax2.scatter(x, y)
# Create four polar axes and access them through the returned array fig, axs = plt.subplots(2, 2, subplot_kw=dict(projection="polar")) axs[0, 0].plot(x, y) axs[1, 1].scatter(x, y)
# Share a X axis with each column of subplots plt.subplots(2, 2, sharex='col')
# Share a Y axis with each row of subplots plt.subplots(2, 2, sharey='row')
# Share both X and Y axes with all subplots plt.subplots(2, 2, sharex='all', sharey='all')
# Note that this is the same as plt.subplots(2, 2, sharex=True, sharey=True)
See :# Create figure number 10 with a single subplot # and clears it if it already exists. fig, ax = plt.subplots(num=10, clear=True)
The following pages refer to to this document either explicitly or contain code examples using this.
matplotlib.gridspec.SubplotSpec.subgridspec
matplotlib
matplotlib.pyplot
matplotlib.figure.FigureBase.add_gridspec
matplotlib.pyplot.subplot
matplotlib.widgets.RectangleSelector
matplotlib.pyplot.axes
matplotlib.figure.FigureBase.add_subplot
matplotlib.figure.FigureBase.subplots
matplotlib.pyplot.plotting
matplotlib.figure.FigureBase.add_axes
matplotlib.widgets.SpanSelector
matplotlib.gridspec
scipy.signal._signaltools.correlate2d
scipy.signal._signaltools.wiener
scipy.special._orthogonal.chebyu
scipy.optimize._zeros_py.newton
scipy.interpolate._bsplines.BSpline
scipy.signal._fir_filter_design.minimum_phase
scipy.signal._filter_design.ellip
scipy.special._spherical_bessel.spherical_kn
scipy.special._orthogonal.gegenbauer
scipy.special._orthogonal.jacobi
scipy.special._spherical_bessel.spherical_yn
scipy.special._orthogonal.genlaguerre
scipy.signal._signaltools.fftconvolve
scipy.signal._filter_design.iirnotch
scipy.signal.windows._windows.general_hamming
scipy.signal._spectral_py.lombscargle
scipy.signal._filter_design.freqz
scipy.signal._filter_design.iirpeak
scipy.signal._bsplines.spline_filter
scipy.special._orthogonal.chebyt
scipy.signal._filter_design.butter
scipy.interpolate._bsplines.BSpline.integrate
scipy.signal._fir_filter_design.firls
scipy.signal._signaltools.convolve
scipy.special._spherical_bessel.spherical_jn
scipy.special._orthogonal.laguerre
scipy.signal._filter_design.iircomb
scipy.special._spherical_bessel.spherical_in
scipy.signal._lti_conversion.cont2discrete
scipy.signal._filter_design.cheby1
scipy.signal._signaltools.hilbert
scipy.signal._filter_design.iirdesign
scipy.signal._signaltools.correlate
scipy.signal._filter_design.cheby2
scipy.interpolate._cubic.CubicSpline
scipy.signal._signaltools.convolve2d
scipy.interpolate._rbfinterp.RBFInterpolator
scipy.signal.windows._windows.dpss
scipy.signal._signaltools.oaconvolve
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them