dlti
instances do not exist directly. Instead, dlti
creates an instance of one of its subclasses: StateSpace
, TransferFunction
or ZerosPolesGain
.
Changing the value of properties that are not directly part of the current system representation (such as the zeros
of a StateSpace
system) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call sys = sys.to_zpk()
before accessing/changing the zeros, poles or gain.
If (numerator, denominator) is passed in for *system
, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., z^2 + 3z + 5
would be represented as [1, 3,
5]
).
The dlti
class can be instantiated with either 2, 3 or 4 arguments. The following gives the number of arguments and the corresponding discrete-time subclass that is created:
2:
TransferFunction
: (numerator, denominator)3:
ZerosPolesGain
: (zeros, poles, gain)4:
StateSpace
: (A, B, C, D)
Each argument can be an array or a sequence.
Sampling time [s] of the discrete-time systems. Defaults to True
(unspecified sampling time). Must be specified as a keyword argument, for example, dt=0.1
.
Discrete-time linear time invariant system base class.
>>> from scipy import signal
>>> signal.dlti(1, 2, 3, 4) StateSpaceDiscrete( array([[1]]), array([[2]]), array([[3]]), array([[4]]), dt: True )
>>> signal.dlti(1, 2, 3, 4, dt=0.1) StateSpaceDiscrete( array([[1]]), array([[2]]), array([[3]]), array([[4]]), dt: 0.1 )
Construct the transfer function $H(z) = \frac{5(z - 1)(z - 2)}{(z - 3)(z - 4)}$ with a sampling time of 0.1 seconds:
>>> signal.dlti([1, 2], [3, 4], 5, dt=0.1) ZerosPolesGainDiscrete( array([1, 2]), array([3, 4]), 5, dt: 0.1 )
Construct the transfer function $H(z) = \frac{3z + 4}{1z + 2}$ with a sampling time of 0.1 seconds:
>>> signal.dlti([3, 4], [1, 2], dt=0.1) TransferFunctionDiscrete( array([3., 4.]), array([1., 2.]), dt: 0.1 )See :
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.signal._ltisys.dstep
scipy.signal._ltisys.TransferFunctionDiscrete
scipy.signal._ltisys.dlti
scipy.signal._ltisys.dlti.step
scipy.signal._ltisys.StateSpace
scipy.signal._ltisys.StateSpaceDiscrete
scipy.signal._ltisys.lti
scipy.signal._ltisys.ZerosPolesGainDiscrete
scipy.signal._signaltools.decimate
scipy.signal._ltisys.dlti.impulse
scipy.signal._ltisys.dimpulse
scipy.signal._lti_conversion.cont2discrete
scipy.signal._ltisys.dfreqresp
scipy.signal._ltisys.ZerosPolesGain
scipy.signal._ltisys.TransferFunction
scipy.signal._ltisys.dbode
scipy.signal._ltisys.dlsim
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them