Represents the system as the continuous- or discrete-time transfer function $H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])$
, where $k$
is the :None:None:`gain`
, $z$
are the zeros
and $p$
are the :None:None:`poles`
. ZerosPolesGain
systems inherit additional functionality from the lti
, respectively the dlti
classes, depending on which system representation is used.
Changing the value of properties that are not part of the ZerosPolesGain
system representation (such as the :None:None:`A`
, :None:None:`B`
, :None:None:`C`
, :None:None:`D`
state-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call sys = sys.to_ss()
before accessing/changing the A, B, C, D system matrices.
The ZerosPolesGain
class can be instantiated with 1 or 3 arguments. The following gives the number of input arguments and their interpretation:
1:
lti
ordlti
system: (StateSpace
,TransferFunction
orZerosPolesGain
)3: array_like: (zeros, poles, gain)
Sampling time [s] of the discrete-time systems. Defaults to :None:None:`None`
(continuous-time). Must be specified as a keyword argument, for example, dt=0.1
.
Linear Time Invariant system class in zeros, poles, gain form.
Construct the transfer function $H(s) = \frac{5(s - 1)(s - 2)}{(s - 3)(s - 4)}$ :
>>> from scipy import signal
>>> signal.ZerosPolesGain([1, 2], [3, 4], 5) ZerosPolesGainContinuous( array([1, 2]), array([3, 4]), 5, dt: None )
Construct the transfer function $H(z) = \frac{5(z - 1)(z - 2)}{(z - 3)(z - 4)}$ with a sampling time of 0.1 seconds:
>>> signal.ZerosPolesGain([1, 2], [3, 4], 5, dt=0.1) ZerosPolesGainDiscrete( array([1, 2]), array([3, 4]), 5, dt: 0.1 )See :
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.signal._ltisys.TransferFunctionContinuous
scipy.signal._ltisys.ZerosPolesGainContinuous.to_discrete
scipy.signal._ltisys.TransferFunctionDiscrete
scipy.signal._ltisys.LinearTimeInvariant._as_zpk
scipy.signal._ltisys.dlti
scipy.signal._ltisys.StateSpace
scipy.signal._ltisys.StateSpace.to_zpk
scipy.signal._ltisys.lti
scipy.signal._ltisys.ZerosPolesGainDiscrete
scipy.signal._ltisys.freqresp
scipy.signal._ltisys.ZerosPolesGainContinuous
scipy.signal._ltisys.ZerosPolesGain._copy
scipy.signal._ltisys.StateSpaceContinuous
scipy.signal._ltisys.TransferFunction.to_zpk
scipy.signal._ltisys.ZerosPolesGain
scipy.signal._ltisys.TransferFunction
scipy.signal._ltisys.StateSpaceDiscrete
scipy.signal._ltisys.ZerosPolesGain.__repr__
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them