Represents the system as the continuous-time, first order differential equation $\dot{x} = A x + B u$
or the discrete-time difference equation $x[k+1] = A x[k] + B u[k]$
. StateSpace
systems inherit additional functionality from the lti
, respectively the dlti
classes, depending on which system representation is used.
Changing the value of properties that are not part of the StateSpace
system representation (such as zeros
or :None:None:`poles`
) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call sys = sys.to_zpk()
before accessing/changing the zeros, poles or gain.
The StateSpace
class can be instantiated with 1 or 4 arguments. The following gives the number of input arguments and their interpretation:
1:
lti
ordlti
system: (StateSpace
,TransferFunction
orZerosPolesGain
)4: array_like: (A, B, C, D)
Sampling time [s] of the discrete-time systems. Defaults to :None:None:`None`
(continuous-time). Must be specified as a keyword argument, for example, dt=0.1
.
Linear Time Invariant system in state-space form.
>>> from scipy import signal
>>> a = np.array([[0, 1], [0, 0]])
... b = np.array([[0], [1]])
... c = np.array([[1, 0]])
... d = np.array([[0]])
>>> sys = signal.StateSpace(a, b, c, d)
... print(sys) StateSpaceContinuous( array([[0, 1], [0, 0]]), array([[0], [1]]), array([[1, 0]]), array([[0]]), dt: None )
>>> sys.to_discrete(0.1) StateSpaceDiscrete( array([[1. , 0.1], [0. , 1. ]]), array([[0.005], [0.1 ]]), array([[1, 0]]), array([[0]]), dt: 0.1 )
>>> a = np.array([[1, 0.1], [0, 1]])
... b = np.array([[0.005], [0.1]])
>>> signal.StateSpace(a, b, c, d, dt=0.1) StateSpaceDiscrete( array([[1. , 0.1], [0. , 1. ]]), array([[0.005], [0.1 ]]), array([[1, 0]]), array([[0]]), dt: 0.1 )See :
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.signal._ltisys.dlti
scipy.signal._ltisys.ZerosPolesGain.to_ss
scipy.signal._ltisys.StateSpaceDiscrete
scipy.signal._ltisys.LinearTimeInvariant._as_ss
scipy.signal._ltisys.TransferFunctionContinuous
scipy.signal._ltisys.StateSpace
scipy.signal._ltisys.lti
scipy.signal._ltisys.StateSpace.to_ss
scipy.signal._ltisys.TransferFunction
scipy.signal._ltisys.dlsim
scipy.signal._ltisys.TransferFunctionDiscrete
scipy.signal._ltisys.TransferFunction.to_ss
scipy.signal._ltisys.StateSpace.__repr__
scipy.signal._ltisys.StateSpaceContinuous
scipy.signal._ltisys.StateSpaceContinuous.to_discrete
scipy.signal._ltisys.TransferFunction._copy
scipy.signal._ltisys.StateSpace._copy
scipy.signal._ltisys.ZerosPolesGainDiscrete
scipy.signal._ltisys.ZerosPolesGainContinuous
scipy.signal._ltisys.ZerosPolesGain
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them