lti
instances do not exist directly. Instead, lti
creates an instance of one of its subclasses: StateSpace
, TransferFunction
or ZerosPolesGain
.
If (numerator, denominator) is passed in for *system
, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., s^2 + 3s + 5
would be represented as [1, 3,
5]
).
Changing the value of properties that are not directly part of the current system representation (such as the zeros
of a StateSpace
system) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call sys = sys.to_zpk()
before accessing/changing the zeros, poles or gain.
The lti
class can be instantiated with either 2, 3 or 4 arguments. The following gives the number of arguments and the corresponding continuous-time subclass that is created:
2:
TransferFunction
: (numerator, denominator)3:
ZerosPolesGain
: (zeros, poles, gain)4:
StateSpace
: (A, B, C, D)
Each argument can be an array or a sequence.
Continuous-time linear time invariant system base class.
>>> from scipy import signal
>>> signal.lti(1, 2, 3, 4) StateSpaceContinuous( array([[1]]), array([[2]]), array([[3]]), array([[4]]), dt: None )
Construct the transfer function $H(s) = \frac{5(s - 1)(s - 2)}{(s - 3)(s - 4)}$ :
>>> signal.lti([1, 2], [3, 4], 5) ZerosPolesGainContinuous( array([1, 2]), array([3, 4]), 5, dt: None )
Construct the transfer function $H(s) = \frac{3s + 4}{1s + 2}$ :
>>> signal.lti([3, 4], [1, 2]) TransferFunctionContinuous( array([3., 4.]), array([1., 2.]), dt: None )See :
The following pages refer to to this document either explicitly or contain code examples using this.
scipy.signal._ltisys.LinearTimeInvariant.__init__
scipy.signal._ltisys.lti.__init__
scipy.signal._ltisys.dlti
scipy.signal._ltisys.lsim
scipy.signal._ltisys.TransferFunctionContinuous
scipy.signal._ltisys.StateSpace
scipy.signal._filter_design.lp2bs
scipy.signal._ltisys.lti
scipy.signal._ltisys.freqresp
scipy.signal._filter_design.lp2bp
scipy.signal._ltisys.step2
scipy.signal._ltisys.TransferFunction
scipy.signal._ltisys.impulse
scipy.signal._ltisys.bode
scipy.signal._ltisys.StateSpaceContinuous
scipy.signal._lti_conversion.cont2discrete
scipy.signal._filter_design.bilinear
scipy.signal._ltisys.impulse2
scipy.signal._ltisys.lsim2
scipy.signal._ltisys.step
scipy.signal._filter_design.lp2hp
scipy.signal._filter_design.lp2lp
scipy.signal._ltisys.ZerosPolesGainContinuous
scipy.signal._ltisys.dlti.__init__
scipy.signal._ltisys.ZerosPolesGain
scipy.signal._filter_design.bilinear_zpk
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them