scipy 1.8.0 Pypi GitHub Homepage
Other Docs
ParametersReturnsBackRef
pchip_interpolate(xi, yi, x, der=0, axis=0)

xi and yi are arrays of values used to approximate some function f, with yi = f(xi) . The interpolant uses monotonic cubic splines to find the value of new points x and the derivatives there.

See scipy.interpolate.PchipInterpolator for details.

Parameters

xi : array_like

A sorted list of x-coordinates, of length N.

yi : array_like

A 1-D array of real values. :None:None:`yi`'s length along the interpolation axis must be equal to the length of :None:None:`xi`. If N-D array, use axis parameter to select correct axis.

x : scalar or array_like

Of length M.

der : int or list, optional

Derivatives to extract. The 0th derivative can be included to return the function value.

axis : int, optional

Axis in the yi array corresponding to the x-coordinate values.

Returns

y : scalar or array_like

The result, of length R or length M or M by R,

Convenience function for pchip interpolation.

See Also

PchipInterpolator

PCHIP 1-D monotonic cubic interpolator.

Examples

We can interpolate 2D observed data using pchip interpolation:

>>> import matplotlib.pyplot as plt
... from scipy.interpolate import pchip_interpolate
... x_observed = np.linspace(0.0, 10.0, 11)
... y_observed = np.sin(x_observed)
... x = np.linspace(min(x_observed), max(x_observed), num=100)
... y = pchip_interpolate(x_observed, y_observed, x)
... plt.plot(x_observed, y_observed, "o", label="observation")
... plt.plot(x, y, label="pchip interpolation")
... plt.legend()
... plt.show()
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

scipy.interpolate._cubic.pchip_interpolate

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/interpolate/_cubic.py#303
type: <class 'function'>
Commit: