figaspect(arg)
While the height is taken from figure.figsize
, the width is adjusted to match the desired aspect ratio. Additionally, it is ensured that the width is in the range [4., 16.] and the height is in the range [2., 16.]. If necessary, the default height is adjusted to ensure this.
If you want to create an Axes within the figure, that still preserves the aspect ratio, be sure to create it with equal width and height. See examples below.
Thanks to Fernando Perez for this function.
If a float, this defines the aspect ratio (i.e. the ratio height / width). In case of an array the aspect ratio is number of rows / number of columns, so that the array could be fitted in the figure undistorted.
The figure size in inches.
Calculate the width and height for a figure with a specified aspect ratio.
w, h = figaspect(2.) fig = Figure(figsize=(w, h)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax.imshow(A, **kwargs)
See :A = rand(5, 3) w, h = figaspect(A) fig = Figure(figsize=(w, h)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax.imshow(A, **kwargs)
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them