scipy 1.8.0 Pypi GitHub Homepage
Other Docs
Parameters
_root_df_sane(func, x0, args=(), ftol=1e-08, fatol=1e-300, maxfev=1000, fnorm=None, callback=None, disp=False, M=10, eta_strategy=None, sigma_eps=1e-10, sigma_0=1.0, line_search='cruz', **unknown_options)

Parameters

ftol : float, optional

Relative norm tolerance.

fatol : float, optional

Absolute norm tolerance. Algorithm terminates when ||func(x)|| < fatol + ftol ||func(x_0)|| .

fnorm : callable, optional

Norm to use in the convergence check. If None, 2-norm is used.

maxfev : int, optional

Maximum number of function evaluations.

disp : bool, optional

Whether to print convergence process to stdout.

eta_strategy : callable, optional

Choice of the eta_k parameter, which gives slack for growth of ||F||**2 . Called as eta_k = eta_strategy(k, x, F) with :None:None:`k` the iteration number, x the current iterate and :None:None:`F` the current residual. Should satisfy eta_k > 0 and sum(eta, k=0..inf) < inf . Default: ||F||**2 / (1 + k)**2 .

sigma_eps : float, optional

The spectral coefficient is constrained to sigma_eps < sigma < 1/sigma_eps . Default: 1e-10

sigma_0 : float, optional

Initial spectral coefficient. Default: 1.0

M : int, optional

Number of iterates to include in the nonmonotonic line search. Default: 10

line_search : {'cruz', 'cheng'}

Type of line search to employ. 'cruz' is the original one defined in [Martinez & Raydan. Math. Comp. 75, 1429 (2006)], 'cheng' is a modified search defined in [Cheng & Li. IMA J. Numer. Anal. 29, 814 (2009)]. Default: 'cruz'

Solve nonlinear equation with the DF-SANE method

Examples

See :

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /scipy/optimize/_spectral.py#15
type: <class 'function'>
Commit: