numpy 1.22.4 Pypi GitHub Homepage
Other Docs
NotesParametersRaisesReturnsBackRef
polyfit(x, y, deg, rcond=None, full=False, w=None)

Return the coefficients of a polynomial of degree :None:None:`deg` that is the least squares fit to the data values y given at points x. If y is 1-D the returned coefficients will also be 1-D. If y is 2-D multiple fits are done, one for each column of y, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted polynomial(s) are in the form

$$p(x) = c_0 + c_1 * x + ... + c_n * x^n,$$

where n is :None:None:`deg`.

Notes

The solution is the coefficients of the polynomial :None:None:`p` that minimizes the sum of the weighted squared errors

$$E = \sum_j w_j^2 * |y_j - p(x_j)|^2,$$

where the $w_j$ are the weights. This problem is solved by setting up the (typically) over-determined matrix equation:

$$V(x) * c = w * y,$$

where :None:None:`V` is the weighted pseudo Vandermonde matrix of x, c are the coefficients to be solved for, w are the weights, and y are the observed values. This equation is then solved using the singular value decomposition of :None:None:`V`.

If some of the singular values of :None:None:`V` are so small that they are neglected (and full == False ), a RankWarning will be raised. This means that the coefficient values may be poorly determined. Fitting to a lower order polynomial will usually get rid of the warning (but may not be what you want, of course; if you have independent reason(s) for choosing the degree which isn't working, you may have to: a) reconsider those reasons, and/or b) reconsider the quality of your data). The :None:None:`rcond` parameter can also be set to a value smaller than its default, but the resulting fit may be spurious and have large contributions from roundoff error.

Polynomial fits using double precision tend to "fail" at about (polynomial) degree 20. Fits using Chebyshev or Legendre series are generally better conditioned, but much can still depend on the distribution of the sample points and the smoothness of the data. If the quality of the fit is inadequate, splines may be a good alternative.

Parameters

x : array_like, shape (`M`,)

x-coordinates of the :None:None:`M` sample (data) points (x[i], y[i]) .

y : array_like, shape (`M`,) or (`M`, `K`)

y-coordinates of the sample points. Several sets of sample points sharing the same x-coordinates can be (independently) fit with one call to polyfit by passing in for y a 2-D array that contains one data set per column.

deg : int or 1-D array_like

Degree(s) of the fitting polynomials. If :None:None:`deg` is a single integer all terms up to and including the :None:None:`deg`'th term are included in the fit. For NumPy versions >= 1.11.0 a list of integers specifying the degrees of the terms to include may be used instead.

rcond : float, optional

Relative condition number of the fit. Singular values smaller than :None:None:`rcond`, relative to the largest singular value, will be ignored. The default value is len(x)*eps , where :None:None:`eps` is the relative precision of the platform's float type, about 2e-16 in most cases.

full : bool, optional

Switch determining the nature of the return value. When False (the default) just the coefficients are returned; when True , diagnostic information from the singular value decomposition (used to solve the fit's matrix equation) is also returned.

w : array_like, shape (`M`,), optional

Weights. If not None, the weight w[i] applies to the unsquared residual y[i] - y_hat[i] at x[i] . Ideally the weights are chosen so that the errors of the products w[i]*y[i] all have the same variance. When using inverse-variance weighting, use w[i] = 1/sigma(y[i]) . The default value is None.

versionadded

Raises

RankWarning

Raised if the matrix in the least-squares fit is rank deficient. The warning is only raised if full == False . The warnings can be turned off by:

>>> import warnings
>>> warnings.simplefilter('ignore', np.RankWarning)

Returns

coef : ndarray, shape (`deg` + 1,) or (`deg` + 1, `K`)

Polynomial coefficients ordered from low to high. If y was 2-D, the coefficients in column k of :None:None:`coef` represent the polynomial fit to the data in y's k-th column.

[residuals, rank, singular_values, rcond] : list

These values are only returned if full == True

  • residuals -- sum of squared residuals of the least squares fit

  • rank -- the numerical rank of the scaled Vandermonde matrix

  • singular_values -- singular values of the scaled Vandermonde matrix

  • rcond -- value of :None:None:`rcond`.

For more details, see numpy.linalg.lstsq .

Least-squares fit of a polynomial to data.

See Also

numpy.linalg.lstsq

Computes a least-squares fit from the matrix.

numpy.polynomial.chebyshev.chebfit
numpy.polynomial.hermite.hermfit
numpy.polynomial.hermite_e.hermefit
numpy.polynomial.laguerre.lagfit
numpy.polynomial.legendre.legfit
polyval

Evaluates a polynomial.

polyvander

Vandermonde matrix for powers.

scipy.interpolate.UnivariateSpline

Computes spline fits.

Examples

>>> np.random.seed(123)
... from numpy.polynomial import polynomial as P
... x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
... y = x**3 - x + np.random.randn(len(x)) # x^3 - x + N(0,1) "noise"
... c, stats = P.polyfit(x,y,3,full=True)
... np.random.seed(123)
... c # c[0], c[2] should be approx. 0, c[1] approx. -1, c[3] approx. 1 array([ 0.01909725, -1.30598256, -0.00577963, 1.02644286]) # may vary
>>> stats # note the large SSR, explaining the rather poor results
 [array([ 38.06116253]), 4, array([ 1.38446749,  1.32119158,  0.50443316, # may vary
          0.28853036]), 1.1324274851176597e-014]

Same thing without the added noise

>>> y = x**3 - x
... c, stats = P.polyfit(x,y,3,full=True)
... c # c[0], c[2] should be "very close to 0", c[1] ~= -1, c[3] ~= 1 array([-6.36925336e-18, -1.00000000e+00, -4.08053781e-16, 1.00000000e+00])
>>> stats # note the minuscule SSR
[array([  7.46346754e-31]), 4, array([ 1.38446749,  1.32119158, # may vary
           0.50443316,  0.28853036]), 1.1324274851176597e-014]
See :

Back References

The following pages refer to to this document either explicitly or contain code examples using this.

numpy.polynomial.hermite_e.hermefit numpy.polynomial.chebyshev.chebfit numpy.polynomial.hermite.hermfit numpy.polynomial.legendre.legfit numpy.polynomial.laguerre.lagfit

Local connectivity graph

Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.

Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)

SVG is more flexible but power hungry; and does not scale well to 50 + nodes.

All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them


GitHub : /numpy/polynomial/polynomial.py#1214
type: <class 'function'>
Commit: