closing(image, selem=None, out=None)
The morphological closing on an image is defined as a dilation followed by an erosion. Closing can remove small dark spots (i.e. "pepper") and connect small bright cracks. This tends to "close" up (dark) gaps between (bright) features.
Image array.
The neighborhood expressed as an array of 1's and 0's. If None, use cross-shaped structuring element (connectivity=1).
The array to store the result of the morphology. If None, is passed, a new array will be allocated.
The result of the morphological closing.
Return greyscale morphological closing of an image.
>>> # Close a gap between two bright linesSee :
... import numpy as np
... from skimage.morphology import square
... broken_line = np.array([[0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0],
... [1, 1, 0, 1, 1],
... [0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0]], dtype=np.uint8)
... closing(broken_line, square(3)) array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=uint8)
The following pages refer to to this document either explicitly or contain code examples using this.
skimage.morphology.grey.closing
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them