parse_edgelist(lines, comments='#', delimiter=None, create_using=None, nodetype=None, data=True)
Input data in edgelist format
Marker for comment lines
Separator for node labels
Use given NetworkX graph for holding nodes or edges.
Convert nodes to this type.
If False generate no edge data or if True use a dictionary representation of edge data or a list tuples specifying dictionary key names and types for edge data.
The bipartite graph corresponding to lines
Parse lines of an edge list representation of a bipartite graph.
Edgelist with no data:
>>> from networkx.algorithms import bipartite
... lines = ["1 2", "2 3", "3 4"]
... G = bipartite.parse_edgelist(lines, nodetype=int)
... sorted(G.nodes()) [1, 2, 3, 4]
>>> sorted(G.nodes(data=True)) [(1, {'bipartite': 0}), (2, {'bipartite': 0}), (3, {'bipartite': 0}), (4, {'bipartite': 1})]
>>> sorted(G.edges()) [(1, 2), (2, 3), (3, 4)]
Edgelist with data in Python dictionary representation:
>>> lines = ["1 2 {'weight':3}", "2 3 {'weight':27}", "3 4 {'weight':3.0}"]
... G = bipartite.parse_edgelist(lines, nodetype=int)
... sorted(G.nodes()) [1, 2, 3, 4]
>>> sorted(G.edges(data=True)) [(1, 2, {'weight': 3}), (2, 3, {'weight': 27}), (3, 4, {'weight': 3.0})]
Edgelist with data in a list:
>>> lines = ["1 2 3", "2 3 27", "3 4 3.0"]
... G = bipartite.parse_edgelist(lines, nodetype=int, data=(("weight", float),))
... sorted(G.nodes()) [1, 2, 3, 4]
>>> sorted(G.edges(data=True)) [(1, 2, {'weight': 3.0}), (2, 3, {'weight': 27.0}), (3, 4, {'weight': 3.0})]See :
The following pages refer to to this document either explicitly or contain code examples using this.
networkx.algorithms.bipartite.edgelist.parse_edgelist
networkx.algorithms.bipartite.edgelist.read_edgelist
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them