to_datetime(arg: 'DatetimeScalarOrArrayConvertible', errors: 'str' = 'raise', dayfirst: 'bool' = False, yearfirst: 'bool' = False, utc: 'bool | None' = None, format: 'str | None' = None, exact: 'bool' = True, unit: 'str | None' = None, infer_datetime_format: 'bool' = False, origin='unix', cache: 'bool' = True) -> 'DatetimeIndex | Series | DatetimeScalar | NaTType | None'
This function converts a scalar, array-like, Series
or DataFrame
/dict-like to a pandas datetime object.
Many input types are supported, and lead to different output types:
scalars can be int, float, str, datetime object (from stdlib datetime
module or numpy
). They are converted to Timestamp
when possible, otherwise they are converted to datetime.datetime
. None/NaN/null scalars are converted to NaT
.
array-like can contain int, float, str, datetime objects. They are converted to DatetimeIndex
when possible, otherwise they are converted to Index
with object
dtype, containing datetime.datetime
. None/NaN/null entries are converted to NaT
in both cases.
Series are converted to Series
with datetime64
dtype when possible, otherwise they are converted to Series
with object
dtype, containing datetime.datetime
. None/NaN/null entries are converted to NaT
in both cases.
DataFrame/dict-like are converted to Series
with datetime64
dtype. For each row a datetime is created from assembling the various dataframe columns. Column keys can be common abbreviations like [‘year’, ‘month’, ‘day’, ‘minute’, ‘second’, ‘ms’, ‘us’, ‘ns’]) or plurals of the same.
The following causes are responsible for datetime.datetime
objects being returned (possibly inside an Index
or a Series
with object
dtype) instead of a proper pandas designated type ( Timestamp
, DatetimeIndex
or Series
with datetime64
dtype):
when any input element is before Timestamp.min
or after Timestamp.max
, see timestamp limitations.
when utc=False
(default) and the input is an array-like or Series
containing mixed naive/aware datetime, or aware with mixed time offsets. Note that this happens in the (quite frequent) situation when the timezone has a daylight savings policy. In that case you may wish to use utc=True
.
The object to convert to a datetime. If a DataFrame
is provided, the method expects minimally the following columns: "year"
, "month"
, "day"
.
If 'raise'
, then invalid parsing will raise an exception.
If 'coerce'
, then invalid parsing will be set as NaT
.
If 'ignore'
, then invalid parsing will return the input.
Specify a date parse order if :None:None:`arg`
is str or is list-like. If True
, parses dates with the day first, e.g. "10/11/12"
is parsed as 2012-11-10
.
dayfirst=True
is not strict, but will prefer to parse with day first. If a delimited date string cannot be parsed in accordance with the given :None:None:`dayfirst`
option, e.g. to_datetime(['31-12-2021'])
, then a warning will be shown.
Specify a date parse order if :None:None:`arg`
is str or is list-like.
If True
parses dates with the year first, e.g. "10/11/12"
is parsed as 2010-11-12
.
If both :None:None:`dayfirst`
and :None:None:`yearfirst`
are True
, :None:None:`yearfirst`
is preceded (same as dateutil
).
yearfirst=True
is not strict, but will prefer to parse with year first.
Control timezone-related parsing, localization and conversion.
If True
, the function always returns a timezone-aware UTC-localized Timestamp
, Series
or DatetimeIndex
. To do this, timezone-naive inputs are localized as UTC, while timezone-aware inputs are converted to UTC.
If False
(default), inputs will not be coerced to UTC. Timezone-naive inputs will remain naive, while timezone-aware ones will keep their time offsets. Limitations exist for mixed offsets (typically, daylight savings), see Examples
<to_datetime_tz_examples>
section for details.
See also: pandas general documentation about :None:None:`timezone conversion and
localization
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
#time-zone-handling>`
.
The strftime to parse time, e.g. "%d/%m/%Y"
. Note that "%f"
will parse all the way up to nanoseconds. See :None:None:`strftime documentation
<https://docs.python.org/3/library/datetime.html
#strftime-and-strptime-behavior>`
for more information on choices.
Control how :None:None:`format`
is used:
If True
, require an exact :None:None:`format`
match.
If False
, allow the :None:None:`format`
to match anywhere in the target string.
The unit of the arg (D,s,ms,us,ns) denote the unit, which is an integer or float number. This will be based off the origin. Example, with unit='ms'
and origin='unix'
(the default), this would calculate the number of milliseconds to the unix epoch start.
If True
and no :None:None:`format`
is given, attempt to infer the format of the datetime strings based on the first non-NaN element, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.
Define the reference date. The numeric values would be parsed as number of units (defined by :None:None:`unit`
) since this reference date.
If 'unix'
(or POSIX) time; origin is set to 1970-01-01.
If 'julian'
, unit must be 'D'
, and origin is set to beginning of Julian Calendar. Julian day number 0
is assigned to the day starting at noon on January 1, 4713 BC.
If Timestamp convertible, origin is set to Timestamp identified by origin.
If True
, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. The cache is only used when there are at least 50 values. The presence of out-of-bounds values will render the cache unusable and may slow down parsing.
changed default value from :None:const:`False`
to :None:const:`True`
.
When parsing a date from string fails.
When another datetime conversion error happens. For example when one of 'year', 'month', day' columns is missing in a DataFrame
, or when a Timezone-aware datetime.datetime
is found in an array-like of mixed time offsets, and utc=False
.
If parsing succeeded. Return type depends on input (types in parenthesis correspond to fallback in case of unsuccessful timezone or out-of-range timestamp parsing):
scalar: Timestamp
(or datetime.datetime
)
array-like: DatetimeIndex
(or Series
with object
dtype containing datetime.datetime
)
Series: Series
of datetime64
dtype (or Series
of object
dtype containing datetime.datetime
)
DataFrame: Series
of datetime64
dtype (or Series
of object
dtype containing datetime.datetime
)
Convert argument to datetime.
DataFrame.astype
Cast argument to a specified dtype.
convert_dtypes
Convert dtypes.
to_timedelta
Convert argument to timedelta.
Handling various input formats
Assembling a datetime from multiple columns of a DataFrame
. The keys can be common abbreviations like ['year', 'month', 'day', 'minute', 'second', 'ms', 'us', 'ns']) or plurals of the same
>>> df = pd.DataFrame({'year': [2015, 2016],
... 'month': [2, 3],
... 'day': [4, 5]})
... pd.to_datetime(df) 0 2015-02-04 1 2016-03-05 dtype: datetime64[ns]
Passing infer_datetime_format=True
can often-times speedup a parsing if its not an ISO8601 format exactly, but in a regular format.
>>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000'] * 1000)This example does not not appear to be valid Python Syntax
... s.head() 0 3/11/2000 1 3/12/2000 2 3/13/2000 3 3/11/2000 4 3/12/2000 dtype: object
>>> %timeit pd.to_datetime(s, infer_datetime_format=True) # doctest: +SKIP 100 loops, best of 3: 10.4 ms per loopThis example does not not appear to be valid Python Syntax
>>> %timeit pd.to_datetime(s, infer_datetime_format=False) # doctest: +SKIP 1 loop, best of 3: 471 ms per loop
Using a unix epoch time
This example is valid syntax, but we were not able to check execution>>> pd.to_datetime(1490195805, unit='s') Timestamp('2017-03-22 15:16:45')This example is valid syntax, but we were not able to check execution
>>> pd.to_datetime(1490195805433502912, unit='ns') Timestamp('2017-03-22 15:16:45.433502912')
unexpected behavior use a fixed-width exact type.
Using a non-unix epoch origin
This example is valid syntax, but we were not able to check execution>>> pd.to_datetime([1, 2, 3], unit='D',
... origin=pd.Timestamp('1960-01-01')) DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None)
Non-convertible date/times
If a date does not meet the :None:None:`timestamp limitations
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
#timeseries-timestamp-limits>`
, passing errors='ignore'
will return the original input instead of raising any exception.
Passing errors='coerce'
will force an out-of-bounds date to NaT
, in addition to forcing non-dates (or non-parseable dates) to NaT
.
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore') datetime.datetime(1300, 1, 1, 0, 0)This example is valid syntax, but we were not able to check execution
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce') NaT
<Unimplemented 'target' '.. _to_datetime_tz_examples:'>
Timezones and time offsets
The default behaviour ( utc=False
) is as follows:
Timezone-naive inputs are converted to timezone-naive DatetimeIndex
:
>>> pd.to_datetime(['2018-10-26 12:00', '2018-10-26 13:00:15']) DatetimeIndex(['2018-10-26 12:00:00', '2018-10-26 13:00:15'], dtype='datetime64[ns]', freq=None)
Timezone-aware inputs with constant time offset are converted to timezone-aware DatetimeIndex
:
>>> pd.to_datetime(['2018-10-26 12:00 -0500', '2018-10-26 13:00 -0500']) DatetimeIndex(['2018-10-26 12:00:00-05:00', '2018-10-26 13:00:00-05:00'], dtype='datetime64[ns, pytz.FixedOffset(-300)]', freq=None)
However, timezone-aware inputs with mixed time offsets (for example issued from a timezone with daylight savings, such as Europe/Paris) are not successfully converted to a DatetimeIndex
. Instead a simple Index
containing datetime.datetime
objects is returned:
>>> pd.to_datetime(['2020-10-25 02:00 +0200', '2020-10-25 04:00 +0100']) Index([2020-10-25 02:00:00+02:00, 2020-10-25 04:00:00+01:00], dtype='object')
A mix of timezone-aware and timezone-naive inputs is converted to a timezone-aware DatetimeIndex
if the offsets of the timezone-aware are constant:
>>> from datetime import datetime
... pd.to_datetime(["2020-01-01 01:00 -01:00", datetime(2020, 1, 1, 3, 0)]) DatetimeIndex(['2020-01-01 01:00:00-01:00', '2020-01-01 02:00:00-01:00'], dtype='datetime64[ns, pytz.FixedOffset(-60)]', freq=None)
Finally, mixing timezone-aware strings and datetime.datetime
always raises an error, even if the elements all have the same time offset.
>>> from datetime import datetime, timezone, timedelta
... d = datetime(2020, 1, 1, 18, tzinfo=timezone(-timedelta(hours=1)))
... pd.to_datetime(["2020-01-01 17:00 -0100", d]) Traceback (most recent call last): ... ValueError: Tz-aware datetime.datetime cannot be converted to datetime64 unless utc=True
Setting utc=True
solves most of the above issues:
Timezone-naive inputs are localized as UTC
>>> pd.to_datetime(['2018-10-26 12:00', '2018-10-26 13:00'], utc=True) DatetimeIndex(['2018-10-26 12:00:00+00:00', '2018-10-26 13:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None)
Timezone-aware inputs are converted to UTC (the output represents the exact same datetime, but viewed from the UTC time offset :None:None:`+00:00`
).
>>> pd.to_datetime(['2018-10-26 12:00 -0530', '2018-10-26 12:00 -0500'],
... utc=True) DatetimeIndex(['2018-10-26 17:30:00+00:00', '2018-10-26 17:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None)
Inputs can contain both naive and aware, string or datetime, the above rules still apply
>>> pd.to_datetime(['2018-10-26 12:00', '2018-10-26 12:00 -0530',See :
... datetime(2020, 1, 1, 18),
... datetime(2020, 1, 1, 18,
... tzinfo=timezone(-timedelta(hours=1)))],
... utc=True) DatetimeIndex(['2018-10-26 12:00:00+00:00', '2018-10-26 17:30:00+00:00', '2020-01-01 18:00:00+00:00', '2020-01-01 19:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None)
The following pages refer to to this document either explicitly or contain code examples using this.
pandas.core.tools.numeric.to_numeric
pandas.core.indexes.datetimes.DatetimeIndex
pandas.core.arrays.datetimelike.DatelikeOps.strftime
pandas.core.generic.NDFrame.convert_dtypes
pandas.core.tools.timedeltas.to_timedelta
pandas.core.generic.NDFrame.infer_objects
pandas.core.generic.NDFrame.astype
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them