merge_asof(left: 'DataFrame | Series', right: 'DataFrame | Series', on: 'IndexLabel | None' = None, left_on: 'IndexLabel | None' = None, right_on: 'IndexLabel | None' = None, left_index: 'bool' = False, right_index: 'bool' = False, by=None, left_by=None, right_by=None, suffixes: 'Suffixes' = ('_x', '_y'), tolerance=None, allow_exact_matches: 'bool' = True, direction: 'str' = 'backward') -> 'DataFrame'
This is similar to a left-join except that we match on nearest key rather than equal keys. Both DataFrames must be sorted by the key.
For each row in the left DataFrame:
A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key.
A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key.
A "nearest" search selects the row in the right DataFrame whose 'on' key is closest in absolute distance to the left's key.
The default is "backward" and is compatible in versions below 0.20.0. The direction parameter was added in version 0.20.0 and introduces "forward" and "nearest".
Optionally match on equivalent keys with 'by' before searching with 'on'.
Field name to join on. Must be found in both DataFrames. The data MUST be ordered. Furthermore this must be a numeric column, such as datetimelike, integer, or float. On or left_on/right_on must be given.
Field name to join on in left DataFrame.
Field name to join on in right DataFrame.
Use the index of the left DataFrame as the join key.
Use the index of the right DataFrame as the join key.
Match on these columns before performing merge operation.
Field names to match on in the left DataFrame.
Field names to match on in the right DataFrame.
Suffix to apply to overlapping column names in the left and right side, respectively.
Select asof tolerance within this range; must be compatible with the merge index.
If True, allow matching with the same 'on' value (i.e. less-than-or-equal-to / greater-than-or-equal-to)
If False, don't match the same 'on' value (i.e., strictly less-than / strictly greater-than).
Whether to search for prior, subsequent, or closest matches.
Perform a merge by key distance.
merge
Merge with a database-style join.
merge_ordered
Merge with optional filling/interpolation.
>>> left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]})This example is valid syntax, but we were not able to check execution
... left a left_val 0 1 a 1 5 b 2 10 c
>>> right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]})This example is valid syntax, but we were not able to check execution
... right a right_val 0 1 1 1 2 2 2 3 3 3 6 6 4 7 7
>>> pd.merge_asof(left, right, on="a") a left_val right_val 0 1 a 1 1 5 b 3 2 10 c 7This example is valid syntax, but we were not able to check execution
>>> pd.merge_asof(left, right, on="a", allow_exact_matches=False) a left_val right_val 0 1 a NaN 1 5 b 3.0 2 10 c 7.0This example is valid syntax, but we were not able to check execution
>>> pd.merge_asof(left, right, on="a", direction="forward") a left_val right_val 0 1 a 1.0 1 5 b 6.0 2 10 c NaNThis example is valid syntax, but we were not able to check execution
>>> pd.merge_asof(left, right, on="a", direction="nearest") a left_val right_val 0 1 a 1 1 5 b 6 2 10 c 7
We can use indexed DataFrames as well.
This example is valid syntax, but we were not able to check execution>>> left = pd.DataFrame({"left_val": ["a", "b", "c"]}, index=[1, 5, 10])This example is valid syntax, but we were not able to check execution
... left left_val 1 a 5 b 10 c
>>> right = pd.DataFrame({"right_val": [1, 2, 3, 6, 7]}, index=[1, 2, 3, 6, 7])This example is valid syntax, but we were not able to check execution
... right right_val 1 1 2 2 3 3 6 6 7 7
>>> pd.merge_asof(left, right, left_index=True, right_index=True) left_val right_val 1 a 1 5 b 3 10 c 7
Here is a real-world times-series example
This example is valid syntax, but we were not able to check execution>>> quotes = pd.DataFrame(This example is valid syntax, but we were not able to check execution
... {
... "time": [
... pd.Timestamp("2016-05-25 13:30:00.023"),
... pd.Timestamp("2016-05-25 13:30:00.023"),
... pd.Timestamp("2016-05-25 13:30:00.030"),
... pd.Timestamp("2016-05-25 13:30:00.041"),
... pd.Timestamp("2016-05-25 13:30:00.048"),
... pd.Timestamp("2016-05-25 13:30:00.049"),
... pd.Timestamp("2016-05-25 13:30:00.072"),
... pd.Timestamp("2016-05-25 13:30:00.075")
... ],
... "ticker": [
... "GOOG",
... "MSFT",
... "MSFT",
... "MSFT",
... "GOOG",
... "AAPL",
... "GOOG",
... "MSFT"
... ],
... "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
... "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03]
... }
... )
... quotes time ticker bid ask 0 2016-05-25 13:30:00.023 GOOG 720.50 720.93 1 2016-05-25 13:30:00.023 MSFT 51.95 51.96 2 2016-05-25 13:30:00.030 MSFT 51.97 51.98 3 2016-05-25 13:30:00.041 MSFT 51.99 52.00 4 2016-05-25 13:30:00.048 GOOG 720.50 720.93 5 2016-05-25 13:30:00.049 AAPL 97.99 98.01 6 2016-05-25 13:30:00.072 GOOG 720.50 720.88 7 2016-05-25 13:30:00.075 MSFT 52.01 52.03
>>> trades = pd.DataFrame(
... {
... "time": [
... pd.Timestamp("2016-05-25 13:30:00.023"),
... pd.Timestamp("2016-05-25 13:30:00.038"),
... pd.Timestamp("2016-05-25 13:30:00.048"),
... pd.Timestamp("2016-05-25 13:30:00.048"),
... pd.Timestamp("2016-05-25 13:30:00.048")
... ],
... "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
... "price": [51.95, 51.95, 720.77, 720.92, 98.0],
... "quantity": [75, 155, 100, 100, 100]
... }
... )
... trades time ticker price quantity 0 2016-05-25 13:30:00.023 MSFT 51.95 75 1 2016-05-25 13:30:00.038 MSFT 51.95 155 2 2016-05-25 13:30:00.048 GOOG 720.77 100 3 2016-05-25 13:30:00.048 GOOG 720.92 100 4 2016-05-25 13:30:00.048 AAPL 98.00 100
By default we are taking the asof of the quotes
This example is valid syntax, but we were not able to check execution>>> pd.merge_asof(trades, quotes, on="time", by="ticker") time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
We only asof within 2ms between the quote time and the trade time
This example is valid syntax, but we were not able to check execution>>> pd.merge_asof(
... trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms")
... ) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. However prior data will propagate forward
This example is valid syntax, but we were not able to check execution>>> pd.merge_asof(See :
... trades,
... quotes,
... on="time",
... by="ticker",
... tolerance=pd.Timedelta("10ms"),
... allow_exact_matches=False
... ) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN 3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
The following pages refer to to this document either explicitly or contain code examples using this.
pandas.core.indexes.base.Index.asof
pandas.core.reshape.merge.merge_ordered
pandas.core.generic.NDFrame.asof
pandas.core.reshape.merge.merge
pandas.core.frame.DataFrame.merge
Hover to see nodes names; edges to Self not shown, Caped at 50 nodes.
Using a canvas is more power efficient and can get hundred of nodes ; but does not allow hyperlinks; , arrows or text (beyond on hover)
SVG is more flexible but power hungry; and does not scale well to 50 + nodes.
All aboves nodes referred to, (or are referred from) current nodes; Edges from Self to other have been omitted (or all nodes would be connected to the central node "self" which is not useful). Nodes are colored by the library they belong to, and scaled with the number of references pointing them